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Abstract—Body pose estimation is a new and exciting field in Computer Vision. It
allows for the estimation of the position of key body parts in images or videos. In
this paper, we explore the use of MediaPipe, a popular open-source library, for
Body Pose Estimation, promising real-time on-device body pose estimation. We
present a demo application that uses MediaPipe to estimate the body pose of a
user air drumming. We evaluate the performance of the application and discuss
the potential for future work in this area. The accuracy of the pose estimation is
evaluated, and some issues are discussed. MediaPipe Pose is shown to achieve an
average accuracy of 5-10 mm and an average of 30 fps. However, the MediaPipe
estimation suffers from noise and jitter. We present a post-processing method
that can reduce that noise and jitter. The method is general, and can be applied to
any pose estimation model.

Index terms—Body Pose Estimation, MediaPipe, Computer Vision, Motion
Capture, 3D Pose Estimation, Demo Application
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1 Introduction
This introductory chapter provides the necessary context for this master’s dissertation. It
starts by presenting the concept of body pose estimation and motion capture. Next is an
introduction to the demo application that will be developed as part of this project and the
motivation behind it. Next, it discusses the research questions that will be addressed and
the goals to be achieved. Finally, it outlines the structure of the dissertation and provides
an overview of the chapters that follow.

Note that this master’s dissertation is not a pure computer vision or machine learning
research project. It is a project that aims to uncover some practical issues when using
body pose estimation for interactive applications and find ways to mitigate these issues.
The project is a combination of research and development, with a focus on the practi-
cal aspects of using body pose estimation for interactive applications. It evaluates the
MediaPipe Pose model, which is a body pose estimation model provided by the Medi-
aPipe framework. The evaluation is done by measuring the accuracy and deviation of the
model under different conditions, achieving an average accuracy of 5-10 mm. The mea-
surements also reveal some limitations of the model, such as jitter and noise in the out-
put. To mitigate these issues, a method is proposed based on predicting the output of
the model. The method is evaluated and shown to reduce jitter and noise in the output.
Finally, a demo application was developed that uses the MediaPipe Pose model for air
drumming. The application allows users to play virtual drums by moving their hands and
feet in the air. The application is evaluated in terms of user experience and performance,
and some insights are provided for future work.

1.1 On-device body pose estimation
Before diving into the goals and research questions of this project, it is important to pro-
vide some context on what is meant by on-device body pose estimation. Body pose esti-
mation is the task of inferring the pose of a person from an image or video. The pose
typically consists of the 2D or 3D locations of key body parts, such as the head, shoul-
ders, elbows, wrists, hips, knees, and ankles. In recent developments, more and more
key points are commonly found in these estimation tools, sometimes with the ability to
achieve complete hand and finger tracking. Body pose estimation has a wide range of
applications, including human-computer interaction, augmented reality, and motion cap-
ture [1]. It can be considered a new form of motion capture based on computer vision.

On-device body pose estimation refers to the ability to perform body pose estimation di-
rectly on a device, such as a smartphone or tablet, without the need for specialized hard-
ware or an internet connection. This is made possible by recent advancements in deep
learning and computer vision, which have enabled the development of lightweight and
efficient models that can run in real-time on mobile devices.
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1.2 Traditional motion capture systems
Traditional motion capture systems are used to track the movements of actors or per-
formers either in real-time or offline. These systems typically consist of multiple cameras
that capture the movements of reflective markers placed on the actor’s body. The cap-
tured data is then processed to reconstruct the actor’s movements in 3D space. Motion
capture systems are widely used in the entertainment industry for creating realistic ani-
mations for movies, video games, and virtual reality experiences.

1.3 Motivation
Currently traditional motion capture systems are still the most accurate and reliable way
to capture human movements. However, they are expensive, require specialized equip-
ment and expertise to set up and operate. On the other hand, on-device body pose esti-
mation offers a more accessible and affordable alternative that can run in real-time on
consumer devices. By developing a demo application that uses on-device body pose esti-
mation for air drumming, we can explore the capabilities and limitations of this technol-
ogy and its potential for interactive applications. This can help inform future research and
development efforts in the field of computer vision and human-computer interaction as
well as inspire new applications and use cases.

1.4 Demo Application
The project aims to develop a demo application that uses on-device body pose estimation
to enable air drumming. The application allows users to play virtual drums by moving
their hands in the air, as well as use their feet to press down on virtual pedals. The goal
is to provide a fun and interactive experience that showcases the capabilities and limita-
tions of on-device body pose estimation.

The main inspiration came from an older sketch performed by Rowan Atkinson as part
of his Rowan Atkinson stand up tours during the years 1981 to 1986. In the clip, Rowan
bumps into, what appears to be, an invisible drum kit.¹ There are no actual attributes on

¹The clip is available on YouTube from the official “Rowan Atkinson Live” channel: https://www.youtube.
com/watch?v=A_kloG2Z7tU 

stage, the only thing standing on the stage is a drum stool. Various drum sounds can
be heard which seem to perfectly match the movements performed by Rowan Atkinson.
After the character played by Rowan Atkinson understands that he has stumbled upon
an invisible drum kit, he starts playing the drums with his hands and feet. What follows is
a neat trick of coordination and timing, as the sounds that we are hearing are obviously
either prerecorded or performed by someone off-stage. The demo application aims to
capture some of that magic by allowing users to actually play drums without the need for
physical drumsticks or a drum kit.
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The demo application will be developed using the MediaPipe framework, which provides a
sufficiently accurate implementation of body pose estimation. The application will lever-
age the body pose estimation provided by MediaPipe to track the user’s body movements
in real-time. It will then use this information to generate drum sounds based on the user’s
hand and foot movements. The application will also include a graphical user interface
that provides visual feedback to the user.

1.5 Goals and research questions
As mentioned, one part of this project is to develop a demo application that uses on-de-
vice body pose estimation to enable air drumming. But that is not all. One aspect of this
research is to evaluate the performance of the body pose estimation model provided by
MediaPipe and identify its limitations. This will involve conducting experiments to mea-
sure the accuracy and robustness of the model under different conditions. Another goal,
on top of the performance evaluation, is to provide a more pragmatic comparison when
it comes to using body pose estimation versus traditional motion capture systems. Dur-
ing the development of the demo application, some properties of the body pose estima-
tion have been identified that need to be considered when developing interactive appli-
cations. All of this addresses the lengthy research question: “What are the capabilities and
limitations of on-device body pose estimation, specifically MediaPipe Pose, for interactive
applications compared to traditional motion capture systems?”

During the measurements some signal stability issues were identified. These issues are
caused by jitter and noise in the body pose estimation output. So another goal is to come
up with a method that can reduce these issues. This leads to the second research ques-
tion: “How can jitter and noise in the body pose estimation output be reduced or mitigated
to improve the stability of interactive applications?”

1.6 Structure of the dissertation
Following this introduction, the dissertation is structured as follows:

• Chapter 2 provides an overview of the state-of-the-art in body pose estimation and mo-
tion capture, focusing on recent developments and advancements in the field.

• Chapter 3 introduces the MediaPipe framework and its body pose estimation model,
highlighting its key features and capabilities.

• Chapter  4 presents the measurements that were conducted to evaluate the perfor-
mance of the MediaPipe Pose model and identify its limitations.

• Chapter 5 discusses the issues of jitter and noise in the body pose estimation output
and proposes a method to reduce these issues.

• Chapter 6 describes the development of the demo application for air drumming, includ-
ing the design and implementation of the application as well as some insights into user
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experience and performance. The capter also includes a comparison between body
pose estimation and traditional motion capture systems for interactive applications.

• Chapter 7 provides some insights into future work that could be done to improve the
demo application and address the limitations of on-device body pose estimation.

• Finally, Chapter 8 concludes the dissertation by summarizing the key findings and con-
tributions of this research.
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2 A brief overview of the State Of The Art
In this section, we will provide a brief overview of some recent body pose estimation tools
and papers that have been published. Moreover, for every tool or paper, we will provide
a short summary of the key features and limitations.

Some rather strict requirements for this specific demo application were set at the begin-
ning of the project. The tool should be able to run on-device in real-time, and should be
able to provide 3D pose estimation. By on-device, we mean that the tool should be able to
run on consumer-grade hardware, such as a smartphone or a laptop. Another important
requirement is the amount of detail that can be tracked. For a drumming demo applica-
tion, it is essential that the hands and feet are properly detected and tracked. In many of
the papers that we will discuss in this section, the tools often lack one of these require-
ments. Out of the tools that we will discuss, only RTMPose and OpenPose meet all the
requirements except for the 3D pose estimation. Only MediaPipe Pose was able to meet
all the requirements.

2.1 Human Motion
The Human Library is an open-source tool, based on web technologies, that provides a
wide range of detection tasks. One of which is body pose tracking. In full the name is “Hu-
man: AI-powered 3D Face Detection & Rotation Tracking, Face Description & Recognition,
Body Pose Tracking, 3D Hand & Finger Tracking, Iris Analysis, Age & Gender & Emotion
Prediction, Gaze Tracking, Gesture Recognition” [2]. It also comes with a library, human-
motion, which is focused on the 3D motion visualisation of the face, body, and hands [3].

Many of the requirements for this project are met by the Human Library. It has an ex-
cellent amount of detail that can be tracked, and it can run on-device. However, during
testing, we could not get the performance to be high enough for real-time applications.
The body pose was only updated every second or so. Even if some setup optimizations
could be made on our side, we do not believe that the performance could be improved
enough to be used in a real-time application.

2.2 Volumetric Capture
This tool is quite different from the other tools in this section. It is not really a body pose
estimation tool, as it does not explicitly provide any precise markers or skeleton. Instead,
it provides a volumetric representation of the human body [4]. This means that it provides
a 3D model of the human body. It does so with a set of calibrated depth cameras, such
as the Intel RealSense camera. It requires quite a lot of specific hardware and multiple
cameras, so it clearly does not conform with the set requirements. This tool is also not
really suitable for our application, as we need precise tracking of the hands and feet using
traditional markers. However, it is an interesting tool that could be used in other applica-
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tions. For example, it has potential in the use of Mixed Reality applications. An overview
of the Volumetric Capture tool can be seen in Figure 1.

Figure 1: “The Volumetric Capture tool overview taken from the official documentation [4].”

Volumetric Capture was developed by the 3D vision team of the Visual Computing Lab.²
Unfortunately, according to the documentation and releases on GitHub, the project

²https://vcl.iti.gr/ 

seems to be abandoned.³ The last release was in 2020 and is only available on Windows

³https://github.com/VCL3D/VolumetricCapture/releases 

10. This limited compatibility and support appears to be common for many of the tools
in this section. Many tools go along with some research paper, but once the research is
done, the tool is abandoned. This lack of updates and maintenance is less than ideal for
use in an actual application.

2.3 MMPose: RTMPose

Figure 2: RTMPose official logo.
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To quote from the official GitHub page: “MMPose is an open-source toolbox for pose es-
timation based on PyTorch. It is a part of the OpenMMLab project.”⁴ [5]

⁴The OpenMMLab project is a collection of “open source projects for academic research and industrial
applications. OpenMMLab covers a wide range of research topics of computer vision, e.g., classification,
detection, segmentation and super-resolution.” https://openmmlab.com/ 

The model of interest in the collection of models is RTMPose [6]. RTMPose is a pose esti-
mation toolkit that works in real-time and with multiple persons in the frame. The model
is quite fast and can run on consumer-grade hardware. They boast with achieved frame
rates of 90+ FPS on an Intel i7-11700 CPU and 430+ FPS on an NVIDIA GTX 1660 Ti GPU.
However, it does not provide 3D pose estimation, it is limited to two dimensions. Despite
this, it is available on many different platforms and devices such as Windows, Linux, and
ARM-based processors. This tool ticks many of the boxes for our project, but the lack of
3D pose estimation was a dealbreaker. But, as shown in the measurements of MediaPipe
Pose in the next section, the 3D pose estimation is not always as accurate as one might
hope. It is even so that the depth, the third dimension, is not used in the final application.
Given the uncovered limitations of the MediaPipe Pose tool, RTMPose might be a better
alternative for our usecase. Especially since it has a way higher achievable frame rate than
MediaPipe Pose.

2.4 AlphaPose

Figure 3: The AlphaPose logo.

AlphaPose is yet another open-source, multi-person pose estimator [7], based on the re-
search paper “RMPE: Regional Multi-person Pose Estimation” [8]. It is one of the earlier
body pose estimation tools originating from 2017. Being an older tool, its accuracy and
performance are not as high as some of the newer tools, such as RTMPose. Besides, it is
one of those tools that is not maintained once the research paper has been published,
making it unfit for actual usage.
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2.5 OpenPose

Figure 4: OpenPose keypoints example.

OpenPose, released in 2018, is the first real-time multi-person system to jointly detect
human body, hand, facial, and foot keypoints (in total 135 keypoints) on single images
(Figure 4). It is based on the research paper “OpenPose: Realtime Multi-Person 2D Pose
Estimation using Part Affinity Fields” [9]. OpenPose is a popular tool that is still maintained
to this day. It supports all major operating systems and can run on consumer-grade hard-
ware. OpenPose supports the detection and tracking of the poses of multiple people in
the frame. As we do not need to track multiple individuals, this feature can be disabled,
leading to an increase in performance according to the documentation. OpenPose stands
out as it also provides 3D key point detection using triangulation from multiple views.
This is a feature that is not present in many of the other tools in this section. OpenPose is
a strong candidate for our application, but the lack of 3D pose estimation using a single
camera is a dealbreaker.

2.6 MindPose
MindPose is the last tool that we will discuss in this section. It is the result of an open-
source project jointly developed by the MindSpore⁵ team [10]. MindPose is a toolbox or

⁵MindSpore is an open-source AI framework developed by Huawei. It is a deep learning and machine
learning framework that is used for training and inference of AI models. https://www.mindspore.cn/ 

python framework that allows for the training and inference of pose estimation models.
Unfortunately, the project seems to be abandoned and unfinished. The project also ap-
pears to be rather bare bones, with no examples and few documentation. It provides
support for three body pose estimation models from 2018 and 2019. The models are HR-
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Net, SimpleBaseline and UDP [11]–[13]. These models do not seem to focus on real-time
applications, and they do not provide 3D pose estimation. The project is not suitable for
our application, but it is interesting to see that Huawei is also working on pose estimation
tools.
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3 MediaPipe Pose Landmarker
The following section describes the MediaPipe Pose Landmarker solution [14]. It first
provides some context about the broader MediaPipe Framework before going into more
detail on the MediaPipe Pose Landmarker solution. The features of the solution are dis-
cussed, as well as the motivation behind the choice of this solution for the air drumming
application. The inference models used in the solution are also briefly discussed, includ-
ing BlazePose and GHUM.

MediaPipe is a collection of on-device machine learning tools and solutions by Google
[15]. It consists of two main categories. There are the MediaPipe solutions, which have
predefined “Tasks” that are ready to be used in your application [16]. There are tasks on
vision such as the detection and categorisation of objects or the detection of hand ges-
tures [17], [18]. One of these vision solutions is the MediaPipe Pose Landmarker. Other
solutions such as text classification and audio classification are also present [19], [20]. On
the other hand, exists the MediaPipe Framework. It is the low-level component used to
build efficient on-device machine learning pipelines, similar to the premade MediaPipe
Solutions [21]. The remainder of this thesis solely addresses the MediaPipe Pose Land-
marker Solution from this point forward, and will frequently be referred to as simply “Me-
diaPipe” or “MediaPipe Pose” for the sake of conciseness.

MediaPipe Pose is available on three different platforms. One can use it in Python, on
Android and on the web. However, these are only just API’s to interact with the actual de-
tection task. The application presented in this thesis is completely written in Python, but
all the concepts that are discussed are applicable to any platform.

3.1 Features
The main feature of MediaPipe Pose is of course, just as all body pose estimation tools, to
extract the body pose from a given image or video frame. Unlike many other body pose
estimation tools, MediaPipe delivers a 3D estimation instead of the more common 2D
estimation, by introducing depth. However, in the measurement results, this added depth
dimensionality is shown to be less than ideal.

The MediaPipe Pose Landmarker solution matches all the requirements set at the begin-
ning of the project. It can run on-device in real-time and provides 3D pose estimation. It
only requires a single camera to operate and can run on consumer-grade hardware. A
laptop with a webcam is sufficient to run the application. The hands and feet are properly
detected and tracked, which is essential for the drumming application. The MediaPipe
Pose Landmarker solution is also quite fast and can run in real-time. The MediaPipe Pose
Landmarker solution is a perfect fit for the air drumming application. Not only does it
meet all the requirements, it is one of the few tools currently available that is ready to be
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used in a production environment. MediaPipe is not just a research tool; it is a tool that
is actively maintained and updated by Google. This is a big advantage over many other
tools that are often abandoned once the research paper has been published.⁶ All of these
reasons are why MediaPipe has been chosen for this project.

⁶Following the announcement at Google I/O 2024, MediaPipe is now part of the larger Google AI Edge
collection of tools and solutions. This once again confirms that MediaPipe is ready to be used in a pro-
fessional and commercial setting. https://ai.google.dev/edge#mediapipe 

MediaPipe has three modes of operation, called the RunningMode. MediaPipe can work on
still images (IMAGE), decoded video frames (VIDEO) and a live video feed (LIVE_STREAM) [14].
Using the live video feed mode has some implications. When running MediaPipe in a real-
time setting, the inference time of the model is constraint by this real-time application.
When frame inference takes too long to be in the time window the frame gets dropped.
Another major aspect of real-time applications is that the inference should not block the
main thread and halt the program. This is why the inference in the LIVE_STREAM mode is
performed asynchronously and results are propagated back using a callback function.

One other feature other than returning the body pose is the creation of an image seg-
mentation mask.⁷ MediaPipe has the ability to output a segmentation mask of the de-

⁷A segmentation mask is a grayscale image, sometimes just pure black and white, with the goal of
partitioning the image into segments. For example, the MediaPipe segmentation mask colours all pixels
white where the human silhouette is visible.

tected body pose. This mask could be used for e.g. applying some visual effects and post-
processing, but it is not of much use in this implementation.

3.2 Inference models
MediaPipe Pose is based on two computer vision models for the inference of the body
pose. The first one is BlazePose which is only designed to return two-dimensional data
in the given frame [22]. A second is the GHUM model, a model that captures 3D meshes
given human body scans. A synthetic depth is obtained via the GHUM model fitted to the
2D points [23].

The Pose task consists of 3 .task files that contain the actual detection task and models.
Three models are available: Lite (3 MB size), Full (6 MB size) and Heavy (26 MB size). The
measurement results will prove that the larger models can provide a more accurate and
correct result but at reduced inference speeds. There is a trade-off to be made between
accuracy and real-time processing. Although the Heavy model is almost 9 times larger
than the Lite model, the improvement in accuracy is a lot smaller. The Lite model is not
considerably worse and produces fine results for the drumming application.
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3.2.1 BlazePose
BlazePose provides human pose tracking by employing machine learning (ML) to infer 33,
2D landmarks of a body from a single frame [22]. A standard for body pose originating
from 2020 is the COCO topology [24]. The COCO 2020 Keypoint Detection Task is a chal-
lenge to develop a solution to accurately detect and locate the keypoints from the COCO
dataset. The original COCO topology only consists of 17 landmarks. With little to no land-
marks on the hands and feet. BlazePose extends this topology to a total of 33 landmarks
by providing landmarks for the hands and feet as well. These added landmarks are crucial
for the drumming application and is part of the reason MediaPipe was chosen.

Figure 5: BlazePose 33 landmark topology with the original COCO landmarks in green.

Next some parts of the BlazePose design and tracking model are discussed. It is impor-
tant to understand some underlying methods discussed here as it helps to interpret the
measurement results. A complete and detailed overview is provided in the original paper
[22].

The pipeline of MediaPipe is displayed in Figure 6. Before predicting the exact location of
all keypoints the pose region-of-interest (ROI) is located within the frame using the Pose
detector. The Pose tracker then subsequently infers all 33 landmarks from this ROI. When
in VIDEO or LIVE_STREAM mode, the pose detection step is only run on the first frame to
reduce the inference time. For any subsequent frames, the ROI is then derived from the
previous points.

As this solution is intended to be used in a real-time setting, the inference needs to be
within milliseconds. The MediaPipe team have observed that the position of the torso is
most easily and efficiently found by detecting the position of the face. The face has the
most high-contrast features of the entire body and thus results in a fast and lightweight
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Figure 6: MediaPipe Pose estimation pipeline

inference compared to the rest of the body [25]. This, of course, has the logical conse-
quence that the face should be visible within the frame. This means that the “drummer”
has to face the camera head on for the best result.

After detecting the face the construction of the pose region-of-interest begins. The hu-
man body centre, scale, and rotation are described using a circle. This circle is constructed
by predicting two virtual points. One point being the centre of the hips, the other lies on
the circle as the extension of the hip midpoint to face bounding box vector. These two
points should now describe a circle as shown in Figure 7.

Figure 7: MediaPipe Pose detection and alignment using virtual keypoints.

Lastly, we very briefly describe the actual network architecture for the tracking of key-
points. The model takes an image as input with a fixed size of 256 by 256 pixels and 3 val-
ues for each pixel providing RGB values, Figure 8. The model uses “a regression approach
that is supervised by a combined heat map/offset prediction of all keypoints” [22], [26].
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The left-hand side outputs the heat maps and offset maps. Both the centre and left-hand
side of the network are trained using the provided heatmap and offset loss. Afterwards,
the heatmaps and output maps output layers are removed and the regression encoder
on the right-hand side is trained. The fixed input layer size indicates that there is no use
in increasing the resolution to get an increase in the prediction accuracy. The measure-
ments also confirm this hypothesis.

Figure 8: MediaPipe Pose network architecture.

3.2.2 GHUM (Generative 3D Human Shape and Articulated Pose Models)
As mentioned, MediaPipe Pose offers an extra dimension unlike many other purely 2D
pose estimation tools. This third dimension is, of course, depth. It does so by utilising an
entirely different model, being the GHUM model [23]. The GHUM model can construct a
full 3D body mesh given image scans of a person. The outputs form an actual 3D mesh
of 10,168 vertices for the regular model and 3,194 vertices for the lite model. MediaPipe
is quite vague on the exact usage of this model in the pose solution. The only mention
of GHUM is in the following sentence: “Keypoint Z-value estimate is provided using synthetic
data, obtained via the GHUM model (articulated 3D human shape model) fitted to 2D point
projections.” [27]. Nonetheless, in the measurements it is shown that there is some notion
of depth, but it is far from accurate. Especially when compared to the other 2D values
provided by the BlazePose model.
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4 Measuring accuracy and deviation
The following chapter discusses the accuracy and deviation of a body pose estimation
tool. More specifically, the outputs of the MediaPipe Pose landmark detection solution
are compared to that of a traditional optical tracking system. All base measurements are
taken from a Qualisys Oqus MRI⁸ system setup at the Art and Science Interaction Lab at

⁸The Oqus MRI is one of Qualisys’ traditional optical motion capture cameras, requiring physical track-
ers on the body that reflect incoming infrared light from the camera. https://www.qualisys.com/cameras/
oqus-mri/ 

De Krook in Ghent, provided by IDLab-Media⁹. An important section is the discussion of

⁹The Art and Science Lab is a “ highly modular research infrastructure aimed at interaction research”, pro-
vided by IDLab-Media, one of the research teams within the research group IDLab from Ghent University
and imec. https://media.idlab.ugent.be/about/ 

the metrics, Section 4.1.3. It is crucial to understand what the measurement metrics are
and how they are calculated to be able to interpret the results correctly.

4.1 Methods
To be able to get indications of the accuracy of MediaPipe Pose, a baseline, or base “truth”,
needed to be established. Using the aforementioned Qualisys MoCap setup at ASIL we
can track marker locations at sub-millimetre accuracy, which are then taken as ground
truth.

4.1.1 Measurement Setup
The setup is configured to be in line with the expected environment the drum application
will be used in. Being, a single person sat on a chair facing a webcam, performing drum-
ming motions. The person performing the movements has infrared reflective trackers
positioned on the body as close as possible to where the MediaPipe Pose landmarks are
located. This setup is shown in Figure 9.

The Qualisys Motion Capture setup first requires a calibration step, after which markers
can be tracked with a precision of up to 0.3 mm. In later measurements, the accuracy has
dropped to 0.8 mm, which can be attributed to calibrating a larger volume of space. For
our use case, this level of accuracy is still sufficient. As we will see, the MediaPipe accu-
racy will not get close to an accuracy of 0.8 mm, so the Qualisys accuracy is more than
sufficient. After applying the reflective markers, motion capture can easily be performed
using the Qualisys Track Manager (QTM) program¹⁰. After having labeled each marker

¹⁰https://www.qualisys.com/software/qualisys-track-manager/ 

and trajectory, these can be exported to a TSV (tab separated values) file [28]. One such a
file looks like the snippet below, Listing 1. First, some context is provided on the measure-
ment. After the listing of the marker names and their trajectory types, follows the actual
trajectory. Every line in the file then describes the 3D position of every marker per frame.
Every three floating point numbers are the x, y and z coordinates of a given marker, in
the same order as they are listed.
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Figure 9: A frame from the camera recording showing the measurement setup.

1 NO_OF_FRAMES  6916 TSV
2 NO_OF_CAMERAS 13
3 NO_OF_MARKERS 10
4 FREQUENCY 120
5 NO_OF_ANALOG  0
6 ANALOG_FREQUENCY  0
7 DESCRIPTION --
8 TIME_STAMP  2024-04-15, 10:39:38.777  406646.66137317
9 DATA_INCLUDED 3D
10 MARKER_NAMES  Wrist_L Hip_L Foot_Index_L
11 TRAJECTORY_TYPES  Measured  Measured  Measured
12 -473.521  191.980 613.382 -677.077  164.814 615.497 -138.493  187.190 53.579
13 -473.564  192.348 613.040 -677.061  164.822 615.494 -138.494  187.229 53.555
14 -473.646  192.696 612.779 -677.045  164.794 615.445 -138.465  187.193 53.464
15 -473.683  192.890 612.513 -676.988  164.782 615.436 -138.448  187.252 53.482

Listing 1: A snippet of what a TSV output from a Qualisys tracked measurement looks like.

The video recordings are captured with a regular webcam with a maximum resolution of
1080p and a frame rate of 30 frames per second. The camera placement needs to be in line
with the forward facing axis of the Qualisys captures to reduce any deviations introduced
by being off-axis. Afterward, the videos get processed frame by frame with MediaPipe,
using the VIDEO running mode¹¹. The video mode is an offline processing mode, meaning

¹¹https://developers.google.com/mediapipe/solutions/vision/pose_landmarker/python#video 

that no frames will be dropped to satisfy a live stream constraint. This mode allows us to

16

https://developers.google.com/mediapipe/solutions/vision/pose_landmarker/python#video
https://developers.google.com/mediapipe/solutions/vision/pose_landmarker/python#video
https://developers.google.com/mediapipe/solutions/vision/pose_landmarker/python#video
https://developers.google.com/mediapipe/solutions/vision/pose_landmarker/python#video


measure models that we otherwise would not be able to run at a constant 30 frames per
second. The result of every processed frame is then written to a CSV file. Every line in the
file contains all the known information of one marker at the given frame. Resulting in the
following format, displayed in Listing 2: frame number, time (in milliseconds), index (of the
marker), x, y, z, visibility, presence, landmark_type (either 0 to indicate a Landmark, or a 1 to
indicate a WorldLandmark).

1 frame,time,index,x,y,z,visibility,presence,landmark_type CSV
2 2,53,0,0.4807698130607605,0.22160261869430542,-0.360921174287796,0.9999996423721313,0.9999953508377075,0
3 2,53,1,0.4906315207481384,0.20818790793418884,-0.33244213461875916,0.9999991655349731,0.9999819993972778,0
4 2,53,2,0.4961097836494446,0.2083108127117157,-0.33247220516204834,0.999998927116394,0.9999785423278809,0
5 2,53,3,0.49966344237327576,0.20876441895961761,-0.33247825503349304,0.9999988079071045,0.9999737739562988,0
6 2,53,4,0.4742940366268158,0.2077968716621399,-0.3331023156642914,0.999998927116394,0.9999858140945435,0
7 2,53,5,0.4689987897872925,0.2078893780708313,-0.3331734538078308,0.999998927116394,0.9999849796295166,0
8 2,53,6,0.4639938175678253,0.20820003747940063,-0.3331492245197296,0.9999990463256836,0.9999834299087524,0
9 2,53,7,0.5079091787338257,0.21490448713302612,-0.17037953436374664,0.9999978542327881,0.9999762773513794,0
10 2,53,8,0.46058356761932373,0.21451136469841003,-0.17510229349136353,0.9999986886978149,0.9999876022338867,0
11 2,53,9,0.49152788519859314,0.23765860497951508,-0.30100592970848083,0.9999997615814209,0.9999942779541016,0

Listing 2: A snippet of the CSV output taken from MediaPipe processed frames. Lines are trun-
cated.

4.1.2 Deviation from one time series to another
Before describing how the outputs from the previous section are used to come up with ac-
curacy measurements, a brief overview of how deviation from one time series to another
is derived, is needed. We want to compare the trajectories from the Qualisys capture with
that of the MediaPipe captures. These trajectories consist of discrete-time points. As the
frame rate of both systems differ, the discrete-time points are unaligned.

Figure 10 provides a visual representation of the problem. We have two time series to
compare. Series 𝑓  in red and series 𝑔 in blue. Due to these points having a different fre-
quency and unaligned time stamps, it is not possible to compare these just by iterating
over both series at the same time. Where an iteration corresponds to jumping to the next
point in time in both series.

One option would be to “walk” over the series based on the time difference between
points. The walk starts by selecting the first point of each series, 𝐴 and 𝐾 in this example.
Then there are three options:
1. Only jump to the next point in the first series
2. Only jump to the next point in the second series
3. Jump to the next point in both series
The option that minimizes the time difference between the selected points is chosen. This
method ensures that every point in both series is taken into account. The pairs of points
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Figure 10: Example of unaligned time series, the horizontal axis being time, the vertical axis
would be some value

that would be selected by this technique is displayed in Figure 11 by the dotted lines. The
measured difference between both signals is then the sum of the length of all dotted lines
(the difference between point pairs) divided by the amount of dotted lines (pairs).

Figure 11: Point pairs selected by walking over both series indicated by the dotted lines.
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However, it is clear to see that this method will result in a higher deviation when compar-
ing a high frequency signal against a lower frequency signal. Which is the case in our
measurements. A high frequency Qualisys measurement (100Hz or more) is compared
against a lower frequency MediaPipe measurement (30Hz). Because we know these dif-
ferences in frequency, we are not interested in a difference method that takes these into
account. The goal of the measurements is to find the average deviation of a point gener-
ated by MediaPipe with that of the corresponding point generated by the Qualisys cap-
ture. The following new method achieves that goal.

Instead of comparing every point in both series, a dominant series is selected. This simple
method iterates over the dominant series and for each point in the dominant series finds
the corresponding point in the other series. The corresponding point being the point with
the timestamp closest to that of the dominant point. Adapting the behavior of the “walk”
to accommodate this idea of having a dominant time series, would result in the following
procedure:
For each point in the dominant time series, walk over the points of the other series until
the difference in time stamps with the dominant point no longer decreases. Then we have
found a new pair. Results of this procedure are displayed in Figure 12.

Figure 12: Point pairs selected by iterating over the dominant series (𝑔, blue) and walking over
the other (𝑓 , red), indicated by the dotted lines.

With this method, we have that the irrelevant points are no longer included in the mea-
surements. Yet this does not mean that the points that are now taken into account are
perfectly aligned with one another. However, due to the high frequency of the Qualisys
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captures, we note that the time difference will be relatively small, and thus the difference
induced by this nonalignment will be quite small. For a Qualisys capture with a frame
rate of 120Hz, there is a frame every 1000 ms120 Hz = 8.33… milliseconds. In the worst case, the
MediaPipe point lies exactly between two Qualisys frames, resulting in a maximum time
difference of only 4.166… milliseconds.

4.1.3 Metrics
Two simple metrics can now be computed having found a way to get point pairs. A first
one is the average offset of one signal to another. By simply taking the average difference
of each point pair. A second and very similar metric is the average deviation. It denotes
how much a signal deviates from another one. Instead of taking the regular difference
of a point pair, the absolute difference is taken. This is an important distinction. The av-
erage offset is simply a metric that tells us how far a signal is from another. The average
deviation, however, can be interpreted as the accuracy with which a signal approximates
another signal. So when the Qualisys signal is seen as the base truth and the MediaPipe
signal is seen as an approximation of that base truth, we have an accuracy measure for
the MediaPipe signal!

Another important metric is the signal stability. For instance, if the MediaPipe signal is
very stable, but has a high average deviation, it is still a good approximation of the Qual-
isys signal. This is because the MediaPipe signal is consistently off by the same amount.
This is an essential metric for interactive applications. If the signal is not stable, the ap-
plication will not be able to provide a consistent experience to the user. The stability of a
signal can be measured by the standard deviation of the deviation. A low standard devi-
ation means that the signal is stable, a high standard deviation means that the signal is
not stable. Another way to measure the stability of a signal is by taking the differences
in deviation between consecutive points. A stable signal should have a low difference in
deviation between consecutive points. It is important to note that the stability of a signal
is not the same as the accuracy of a signal. A signal can be very stable but not accurate,
and vice versa.

After this slight detour, follow the methods used to align the MediaPipe results to the
Qualisys captures.

4.1.4 Aligning MediaPipe to Qualisys
Using the setup described in Section 4.1.1 we have two time series that can be compared
using the method from the previous section. However, before that is possible there is
still one major issue that needs to be solved. The points from the MediaPipe result origi-
nate from a totally different axis and origin point. The Qualisys captures have their origin
point calibrated on the floor, with the x-axis being the forward facing axis, the y-axis the
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horizontal axis and the z-axis the vertical axis. The MediaPipe Landmarks, on the other
hand, do not actually correspond with a point in space but rather with a point in the video
frame and an associated depth. For the Landmark markers the origin point in this Medi-
aPipe case is the left corner of the video frame. The x-axis is the horizontal axis along the
frame, the y-axis is the vertical axis along the frame, and the z-axis is the depth from the
camera. MediaPipe also has a different kind of Landmarks (Landmark), namely the World
Landmarks (WorldLandmark). These try to map the regular Landmarks, which are a point in
the video frame, to a point in space. With the center of the hips taken as origin. The axis
remain the same but are scaled so that the WorldLandmarks are in line with the actual size
of movement in the space.

This section gives a complete overview on how the MediaPipe signal has been aligned
to match the Qualisys signal and provide a proper measurement on accuracy. The entire
section uses a measurement of the vertical position of the left wrist marker, taken from
MediaPipe using regular Landmarks and the FULL model. A high level overview of all the
alignment steps are shown in Figure 13.

Figure 13: The entire alignment process of the MediaPipe signal to the Qualisys signal.

4.1.4.1 Axis Rearrangement
The output from the recordings are time series that can be plotted. The output from the
measurements is read and without any processing plotted to a line plot in Figure 14. On
the horizontal axis is time in seconds. On the vertical axis is the value of the point in time
in millimeter. Figure 14 shows a clear mismatch in axis. Plotted is the z-axis from both
capture systems. But as mentioned, in MediaPipe the z-axis is the depth and not the ver-
tical axis.
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Figure 14: Plot of the MediaPipe (Blue) and Qualisys (Red) left wrist z-axis without processing.

The problem of mismatched axes is a very simple one to solve. Before plotting the Me-
diaPipe signal we switch the axis so they match with the actual direction of axis in the
Qualisys recording. The MediaPipe axes are thus mapped as follows:
• 𝑥 → 𝑦

• 𝑦 → 𝑧

• 𝑧 → 𝑥

As can be seen in Figure 15, we now have plotted the proper vertical axis. One might have
noted the pretty nonsensical values of the MediaPipe signal. For one, they are negative.
Whereas moving up corresponds to an increase in value with the Qualisys captures, the
inverse is true for the MediaPipe results. This requires us to re-invert the vertical values
during analysis, resulting in negative values. Normally Landmark values would be in the
range [0, 1], 0 being one side of the video frame, 1 the other side. But these values are
inverted by multiplying by −1 resulting in a new range of [0, −1]. Because this inverting
method should also work for WorldLandmarks which have no predefined range of values it
is not possible to invert the values using the following method: 𝑥 ⇒ 1 − 𝑥.

Secondly, all MediaPipe values have been multiplied by 1000. As the Qualisys output is in
millimeter we already prepare the MediaPipe signal by interpreting the incoming signal
as meter and converting it to millimeter. The MediaPipe Landmark signal has no real unit
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of course but interpreting it as meters allows for a simpler interpretation when it comes
to scaling, explained later in this section.

Figure 15: Plot of MediaPipe (Blue) and Qualisys (Red) left wrist z-axis after re-arranging the
MediaPipe axes.

4.1.4.2 Removing Average Offset and Time Offset
Now that the basics are out of the way, we can start aligning the signal. A first step is re-
moving the average offset from the MediaPipe signal to the Qualisys signal. The method
of walking over the dominant series (MediaPipe in this case) and gathering pairs of points
from both series as discussed in the previous section, Section 4.1.2, is used for this. For
every pair of points, we can simply take the difference between those points. The average
of these differences is then the offset of the MediaPipe signal. The result of removing this
offset from the MediaPipe signal is displayed in Figure 16.

With the two signals close together, another problem becomes apparent. They are offset
in time. This makes sense, as both measurements cannot easily be started at exactly the
same time. We need to introduce a starting offset. This starting offset should minimize
the deviation between both signals. This is achieved by iteratively increasing a starting
offset and capturing the offset that resulted in the least deviation. In Figure 17, it is shown
that this method finds the most perfect offset. Both signals are perfectly aligned in time.
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Figure 16: Plot of the MediaPipe (Blue) and Qualisys (Red) left wrist z-axis with the average
offset removed.

After this offset operation, the average vertical offset is computed again and subtracted
from the signal.

4.1.4.3 Scaling
The final and most intricate part of the alignment is getting the scaling right. As we can
see in the previous plots, the scale of the signal is not at all correct. Here, a scaling factor
needs to be found that minimizes the deviation. There is one caveat, we cannot simply
scale the signal by multiplying it with a given factor. This would scale the signal away from
the origin point. One can see that, in fact, we should “stretch” the signal vertically to make
it align. In other words, the signal needs to be scaled around the center point of the signal
that it is being aligned to.

The center point of the signal is easily calculated as the average of the signal’s values.
The stretching of the signal then goes as follows: For every original point of the signal,
take the difference between that point and the center point of the other signal. Scale the
difference by the scaling factor. The new stretched point is now the center point plus the
scaled difference.
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Figure 17: Plot of the MediaPipe (Blue) and Qualisys (Red) left wrist z-axis with the time offset
removed.

The previous method of finding the optimal time offset is a simple one. Since it is a dis-
crete problem, the optimal value can easily be found by testing all possible values. The
optimal scale, however, is not a discrete value. To find the optimal scaling factor, we need
an optimization algorithm.

The optimization problem at hand can be solved using Golden-section search [29].¹² It is a
technique for finding an extremum (minimum or maximum) of a function inside a speci-

¹²During the measurement we found that the depth axis, the X axis, is so inaccurate that it is not pos-
sible to use the described method to align the signals. The golden section search would converge to a
scaling factor of 0, which minimizes the deviation. This is not a useful result. This is why the depth axis
always has a fixed scale of 0.5 applied to it. It is a value that was found to produce the best alignment in
the measurements.

fied interval [30]. In our case, the function is the deviation function that takes as input the
scale factor and outputs the deviation after applying the scale. The algorithm converges
to one extremum by narrowing down an interval of possible values. Without going into
too much detail on the algorithm and its implementation, the algorithm is initialized to
search within a range of [0, 10] as possible scale factors and stops when the improve-
ments in deviation fall below 0.01 mm. Applying the Golden-section search method on
our running example returns a scale factor of around 2 and results in a nice alignment
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between both signals (Figure 18). The factor of 2 also makes sense. In the Landmark mode,
the range of values lie between 0 and 1, reaching these outer values at the edges of the
frame. As mentioned, the Landmark signal is interpreted to be in meter. As a consequence,
the scaling factor is not only a scaling factor, it has become a measurement of the dimen-
sions of what is visible in the frame. This means that the visible height in the video frame
is 2 meters, at the location of the test subject, of course.

Figure 18: Plot of the MediaPipe (Blue) and Qualisys (Red) left wrist z-axis with the MediaPipe
signal scaled to match.

4.2 Results
In this section all the measurement results are listed and discussed. The results go over
the effect of the different MediaPipe Pose models (LITE, FULL, and HEAVY) and the accuracy
and frame rate that was achieved. All measurements are performed with GL version: 3.2
(OpenGL ES 3.2 NVIDIA 550.78) on a  NVIDIA GeForce RTX 2060 GPU and an Intel(R) Core(TM)
i7-9750H (12) @ 2,60 GHz CPU, unless specified otherwise. The actual inference is executed
on the GPU while the rest of the application just runs on the CPU with minimal overhead.
It is the inference that is the most time-consuming element.

The results discuss the accuracy and signal stability of the MediaPipe result, as well as
some aspects that affect the signal. The accuracy is the deviation from the MediaPipe
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recordings using the techniques from the previous chapter. The signal stability is the ab-
solute value of the derivates of these deviations. The derivative is numerically computed
by taking the difference of two succeeding deviation values. By taking the absolute value,
we get a measure of how much the deviation differs per frame and thus how stable the
signal is. The lower this value, the better the signal stability. All of these values are taken
per frame and per tracked marker. They are then described in box plots with a corre-
sponding table. Indicating the mean, standard deviation, min, max, and some percentiles.
Since there is too much data to be included in this thesis text, all measurement results
are made publicly available on a GitHub repository.¹³

¹³Follow this link to the GitHub repository: Mouwrice/DrumPyAnalysis . All measurement results are lo-
cated in the measurements folder. Every measurement is in a separate folder, with the folder name being
a very brief description of the measurement. Inside every measurement folder are the actual results,
grouped by the MediaPipe model that was used.

4.2.1 Results Example
To further clarify the results in the coming sections and the way they are presented, con-
sider the following example. It is a measurement of an air drumming recording which has
been tracked by both Qualisys and MediaPipe. The MediaPipe FULL model has been used,
together with the regular Landmark marker type.¹⁴

¹⁴The complete results of the example here are from the following measurement: https://github.com/
Mouwrice/DrumPyAnalysis/tree/main/data/measurements/maurice_drum_regular/FULL 

The trajectory of the left wrist marker can be plotted, e.g. the trajectory along the z-axis
(vertical axis) in Figure 19.

The deviations can be plotted in a box plot (Figure 20), as well as the stability of the signal
(Figure 21).

Lastly, the deviation and stability values are also made available by describing them in a
tabular format as shown in Table 1 and Table 2, respectively. The tables are split up per
axis and show the mean, standard deviation, min, max, and some percentiles of the de-
viation and stability values.
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Figure 19: The trajectory along the z-axis (vertical axis) of the maurice_drum_regular measure-
ment. Model: FULL, Marker type: Landmark, Marker: Left Wrist.

Figure 20: Per axis deviation of the maurice_drum_regular measurement. Model: FULL, Marker
type: Landmark, Marker: Left Wrist.
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Figure 21: Signal stability of the maurice_drum_regular measurement. Model: FULL, Marker type:
Landmark, Marker: Left Wrist.

Deviation (mm) X Y Z
mean 50.453455 8.921537 16.330614
std 59.822373 9.993484 15.278144
min 0.048005 0.002286 0.001623
25% 16.249777 2.189822 7.440695
50% 34.482323 5.407212 11.327267
75% 62.916892 11.654837 18.541468
max 376.630114 63.694605 87.138306

Table 1: The deviation of the signal from the maurice_drum_regular measurement. Model: FULL,
Marker type: Landmark, Marker: Left Wrist.

Stability (mm) X Y Z
mean 13.498988 1.621383 2.256355
std 14.644994 2.919033 4.950195
min 0.000851 0.000011 0.000156
25% 3.090311 0.238420 0.163133
50% 8.675376 0.552805 0.459906
75% 18.577672 1.355008 1.632371
max 111.856248 27.770244 52.482742

Table 2: The signal stability from the maurice_drum_regular measurement. Model: FULL, Marker
type: Landmark, Marker: Left Wrist.
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4.2.2 Effect of the models
MediaPipe has three different models available, each with a different size. The larger the
model, the more accurate it results should be, since the inference model has a larger
network that does the inference. Using a larger model negatively impacts the real-time
performance, of course. Comparing these different models, we found that the average
accuracy does not drastically increase given a large model. The achievable frame rate,
however, can drop significantly given these large models, dependent on the hardware
used.

For each model, 3 results are provided, each result being from one specific recording.
The recordings are all drumming motions, but with increasing levels of intensity. The first
recording is of small movements (maurice_drum_small). The second one features normal
movements (maurice_drum_regular) and the last one contains fast and big movements
(maurice_drum_fast). The accuracy is taken from a total of 10 tracked markers, being the
Left Elbow, Right Elbow, Left Wrist, Right Wrist, Left Hip, Right Hip, Left Heel, Right Heel,
Left Foot Index, Right Foot Index.

4.2.2.1 LITE
The LITE model is 3 MB in size and is the smallest model available.

The total deviation of all three recordings are displayed in Table 3, Table 4, and Table 5,
respectively. We can immediately draw some conclusions from these results. The Y and
Z axis (horizontal and vertical) have a relatively good accuracy compared to the X axis
(depth). The depth is actually very imprecise and unstable, having a high mean deviation
and a high standard deviation makes this depth not very usable. The accuracy of mea-
surements containing fast, and large movements is lower than for smaller and slower
movements. This indicates that the wider the range of movements and the speed at which
they are performed results in a slight drop in accuracy. Almost all deviation values are
slightly higher than their corresponding values from a recording featuring less and slower
movement.

Despite the X axis being very imprecise, the Y and Z axis consistently achieve an accuracy
of minimum 1 centimetre. For an air drumming application, this level of accuracy is al-
ready pretty usable.

Deviation (mm) X Y Z
mean 46.216412 6.504117 8.755020
std 52.435068 8.534992 9.435842
min 0.000424 0.001266 0.000092
25% 7.747909 1.523800 2.533034
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Deviation (mm) X Y Z
50% 26.830197 3.518769 5.717354
75% 65.330929 7.591232 10.964000
max 304.913545 91.105333 69.909789

Table 3: The total deviation from the maurice_drum_small measurement. Model: LITE, Marker
type: Landmark.

Deviation (mm) X Y Z
mean 44.065230 6.498654 10.911481
std 55.829339 7.804492 12.150179
min 0.000830 0.000079 0.000673
25% 8.900595 2.055750 3.500705
50% 24.601205 4.378533 7.580231
75% 57.471564 8.009390 13.549875
max 460.941039 164.103709 140.990013

Table 4: The total deviation from the maurice_drum_regular measurement. Model: LITE, Marker
type: Landmark.

Deviation (mm) X Y Z
mean 64.872857 7.181918 10.046277
std 70.935324 9.058099 14.284985
min 0.006952 0.000276 0.000796
25% 9.690526 2.168622 2.386345
50% 31.462373 4.908393 5.571245
75% 113.099430 8.903545 12.760656
max 680.599720 226.170262 592.765323

Table 5: The total deviation from the maurice_drum_fast measurement. Model: LITE, Marker
type: Landmark.

4.2.2.2 FULL
The FULL models is double the size of the LITE model, at 6 MB. But that does not mean the
deviation is halved. Compared to the LITE model, the average accuracy is increased by 1
and at most 2 mm. The standard deviation is reduced a bit using this heavier model. Some
outlier values are also reduced. This indicates that the FULL model provides a cleaner re-
sult but only with a marginal increase in accuracy.

Deviation (mm) X Y Z
mean 40.883051 5.702290 7.874736
std 50.636690 6.940303 8.912165
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Deviation (mm) X Y Z
min 0.000027 0.000366 0.000008
25% 5.576486 1.458272 2.017663
50% 19.581533 3.285286 4.814794
75% 56.780453 7.264643 9.913902
max 309.870406 75.601338 82.893488

Table 6: The total deviation from the maurice_drum_small measurement. Model: FULL, Marker
type: Landmark.

Deviation (mm) X Y Z
mean 44.054789 5.877316 10.028784
std 52.458578 6.611694 10.963382
min 0.000578 0.000225 0.001258
25% 8.880800 1.829242 2.919620
50% 24.080457 4.135115 6.481524
75% 64.801731 7.475370 13.322674
max 423.136841 68.750352 91.792725

Table 7: The total deviation from the maurice_drum_regular measurement. Model: FULL, Marker
type: Landmark.

Deviation (mm) X Y Z
mean 57.356438 6.444404 9.623760
std 71.275673 8.949972 15.462130
min 0.002776 0.001176 0.000118
25% 5.237184 1.277760 1.798388
50% 17.238973 3.093675 4.298769
75% 102.966444 7.503870 11.247950
max 679.421116 117.911612 586.803848

Table 8: The total deviation from the maurice_drum_fast measurement. Model: FULL, Marker
type: Landmark.

4.2.2.3 HEAVY
The HEAVY model is the largest of them all at a size of 26 MB. At this level, we have clearly
reached a point of diminishing returns. Despite increasing the model size by a factor of
4, the improvements are not a big jump up. The jump in accuracy from FULL to HEAVY is
similar to the jump from LIGHT to FULL, again increasing the accuracy by 1 mm. The X axis
also gets an increase in accuracy but proves to still be too unstable and imprecise to be of
any use. At this point, the axis lateral to the image frames (Y and Z) are considerably ac-
curate, reaching an average accuracy of 5 and 7 mm respectively. Just as with the smaller
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models, larger movements lead to a slight drop in accuracy, there is especially an increase
in outliers.

Deviation (mm) X Y Z
mean 38.662930 4.880106 6.931904
std 46.034748 6.095308 7.833226
min 0.000757 0.000524 0.000945
25% 5.908032 1.228680 1.864810
50% 17.719570 2.879538 3.958334
75% 61.890476 5.876115 8.929086
max 293.278487 90.609627 65.955275

Table 9: The total deviation from the maurice_drum_small measurement. Model: HEAVY, Marker
type: Landmark.

Deviation (mm) X Y Z
mean 48.331793 5.311494 9.191098
std 66.957378 6.810102 10.310719
min 0.006057 0.000938 0.000114
25% 9.469759 1.529734 2.387941
50% 25.329217 3.363876 5.430044
75% 61.941299 6.533454 12.837094
max 622.943655 67.798017 90.548038

Table  10: The total deviation from the maurice_drum_regular measurement. Model: HEAVY,
Marker type: Landmark.

Deviation (mm) X Y Z
mean 61.698936 5.610732 7.894003
std 69.377889 7.535471 12.391467
min 0.007052 0.000091 0.000255
25% 7.327052 1.214547 1.887956
50% 25.502218 2.906578 4.056903
75% 112.404883 7.307336 9.338038
max 678.986135 121.335236 587.988858

Table 11: The total deviation from the maurice_drum_fast measurement. Model: HEAVY, Marker
type: Landmark.

4.2.2.4 Signal stability
One metric that has been left out, so far, is the signal stability. The deviation tables above
hint that a heavier model might not just provide a small increase in accuracy, but also
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provide an increase in signal stability. This is hinted at by the lower standard deviation
and the lower 75% percentile values. Having a more stable signal, meaning less outliers
and a more consistent deviation difference between frames, is also an important aspect.
The following tables plot the signal stability for every model on the maurice_drum_regular
measurement. Remember that the signal stability is calculated as the absolute difference
in deviation between consecutive frames, the lower the values the better.

Stability LITE (mm) X Y Z
mean 7.764771 1.352941 2.096501
std 10.085330 2.809363 4.220660
min 0.000014 0.000023 0.000073
25% 1.026297 0.208817 0.217875
50% 3.969899 0.595858 0.739438
75% 10.707028 1.440624 2.116421
max 118.670178 116.634008 107.199950

Table  12: The signal stability from the maurice_drum_regular measurement. Model: LITE,
Marker type: Landmark, Marker: Left Wrist.

Stability FULL (mm) X Y Z
mean 7.579568 1.106332 1.694458
std 10.574589 2.057231 3.608910
min 0.000109 0.000078 0.000012
25% 0.752476 0.165129 0.176408
50% 3.633556 0.468424 0.560157
75% 10.260663 1.137847 1.569148
max 112.231639 46.151331 52.179156

Table  13: The signal stability from the maurice_drum_regular measurement. Model: FULL,
Marker type: Landmark, Marker: Left Wrist.

Stability HEAVY (mm) X Y Z
mean 6.122471 0.979171 1.511921
std 8.788107 1.873792 3.426255
min 0.000077 0.000090 0.000053
25% 0.736543 0.133611 0.139911
50% 2.849786 0.392975 0.450573
75% 8.104202 0.981124 1.274915
max 108.713253 40.173077 51.322185

Table  14: The signal stability from the maurice_drum_regular measurement. Model: HEAVY,
Marker type: Landmark, Marker: Left Wrist.
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Table 12, Table 13 and Table 14 clearly demonstrate that a larger model not only increases
accuracy but also the signal stability. The effect is modest, with the most significant dif-
ference being the values going from the LITE model to the FULL model. This effect is
also noticeable when viewing the inference visualization, where we can see that the FULL
model provides a more stable result. The markers are less jittery and their movements
are ‘smoother’.

4.2.2.5 Conclusion
Now that we have compared the accuracy of all three models, we have a clear view of
the expected accuracy. For any lateral movement, that is movement lateral to the image
frame, the horizontal and vertical axis, an accuracy of 5-10 mm can be achieved with some
deviations from that accuracy of at most 1 centimetre. There is however also the possibil-
ity for some jitter to occur in the resulting signal which can some major deviations from
the actual movement, but these are only of short duration.

The depth axis, the X axis, is considerably less accurate. The accuracy is around 40-60 mm,
with some deviations of up to 100 mm. The depth is as mentioned “obtained via the GHUM
model fitted to 2D point projections.” Unfortunately, this depth is not very usable for an air
drumming application. The depth is also very unstable, with a high standard deviation
and a high number of outliers. This is especially the case when the movements are fast
and large.

Comparing the models, there is little accuracy to be gained from choosing a larger model.
However, larger models provide a more stable signal, which can be essential as the drum-
ming application mostly looks at the relative movements instead of absolute values. As
we are developing an application to be used live, the largest model that can achieve real-
time inference is preferred. The inference time is of course dependent on the hardware,
which means that in some cases the HEAVY model can be used but in other cases the LITE
model is the only one that can be properly run in real-time, Section 4.2.3.

4.2.3 Achievable framerate
The frame rate that can be achieved should be high enough for a proper real-time appli-
cation. The higher the frame rate, the more responsive the application will feel and the
more accurate the tracking can be. A higher frame rate also allows for faster motions
to be captured, which is handy in the case of fast drumming motions. The frame rate
is dependent on the hardware used, but also on the model that is used. The larger the
model, the more computationally expensive it is to run the inference. The following table
(Table 15) lists the maximum frame rate that was achieved for each model, as well as the
device that was used to run the inference.

35



Device (fps) LITE FULL HEAVY

CPU Intel Core i7-10750H 25 20 7
GPU Intel UHD Graphics 630 19 17 11
CPU AMD Ryzen 5 5600X 40 30 10
GPU NVIDIA RTX 2060 45 42 40

Table 15: The maximum frame rate (fps) that can be achieved for each model with different
devices.

The table shows that the LITE model can be run in real-time on all devices. The FULL model
can also be run in real-time on most devices, but the HEAVY model is too computationally
expensive to run in real-time on most devices. The HEAVY model can only be run in real-
time on the NVIDIA RTX 2060 GPU. It is no surprise that the GPU is the most performant
of the four devices. However, despite being able to run the HEAVY model at a constant 40
fps, the GPU’s performance on the smaller models is surprisingly not a lot higher. We can
conclude that the GPU has a lot of power but lacks the speed of a CPU¹⁵, hence the good

¹⁵A CPU typically has a higher clock speed than a GPU, allowing to perform many more consecutive
operations per second. A GPU is mainly designed to perform many operations simultaneously.

results for the HEAVY model and the not much improved results for the smaller models.
This difference between power and speed also becomes apparent when comparing the
Intel Core i7-10750H and the AMD Ryzen 5 5600X. The AMD Ryzen 5 5600X has a higher
clock speed and can run the FULL model at 30 fps, while the Intel Core i7-10750H can
only run the FULL model at 20 fps. The HEAVY model is too computationally expensive for
both devices. On the LITE model, however, they are on par with the GPU’s. The Intel Core
i7-10750H can run the LITE model at 25 fps, while the AMD Ryzen 5 5600X can run the
LITE model at 40 fps. The Intel UHD Graphics 630 and the NVIDIA GeForce 2060 GPU can
run the LITE model at 19 and 45 fps respectively.

The conclusion is that the FULL model is the best model to use for real-time applications.
It provides a good balance between accuracy and frame rate. The HEAVY model is too
computationally expensive to run in real-time on most devices, while the LITE model is
somewhat unstable to rely on. The FULL model can be run in real-time on most (modern)
devices, providing a good balance between accuracy and frame rate. If the device is not
powerful enough to run the FULL model in real-time, the LITE model can be used as a
fallback.

4.2.4 Jitter
One aspect that leads to a less stable signal is jitter. Jitter is the sudden, unintended vari-
ation in the position of a tracked marker. In the recordings, we see that this jitter mostly
occurs when the tracked body part is either fast-moving or occluded in any way. This is
mostly present when crossing arms in our recordings. As shown in Figure 22, the jitter is
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clearly visible around the 20-second mark. This jitter is not present in all recordings, but
is a factor that can lead to a less stable signal. Jitter occurs less frequently in the larger
models, which partly explains the increased signal stability using these models. When
developing an application that relies on the stability of the signal, it is important to ac-
knowledge that jitter can occur and that it can lead to a less stable signal.

Figure 22: A case of jitter in the maurice_drum_fast measurement around the 20 seconds mark.
Model: LITE, Marker type: Landmark, Marker: Right Wrist.

4.2.5 Noise
Another aspect that can lead to a less stable signal is noise. Noise is the random variation
in the position of a tracked marker. This noise is mostly present when the tracked body
part is not moving at all. It can be seen in the trajectories that larger models produce a
less noisy signal than smaller models. This is shown in Figure 23. The noise is clearly visi-
ble in the LITE model, while the FULL and HEAVY models have a much more stable signal. It
should be noted that the noise is rather small and is still in line with the accuracy values
that were discussed earlier. The signal stability tables also clearly show that the noise is
present in the LITE model but is reduced in the FULL and HEAVY models. (Table 16)
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LITE Stability X Y Z
mean 8.537066 1.053139 2.158305
std 8.288110 1.261807 2.967522

FULL Stability X Y Z
mean 6.025950 0.589802 1.300819
std 8.030914 0.914598 2.288527

HEAVY Stability X Y Z
mean 5.830511 0.441127 1.026949
std 6.083284 0.685263 1.925742

Table 16: The signal stability from a noisy signal in the the maurice_drum_regular measurement.
Models: LITE, FULL, HEAVY. Marker type: Landmark. Marker: Right Heel.

Figure 23: A noisy signal in the maurice_drum_regular measurement. Models: LITE (top left),
FULL (top right), HEAVY (bottom left). Marker type: Landmark. Marker: Right Heel.

4.2.6 Resolution
Following the description of the model network of the MediaPipe Pose Task, we know
that the input has a fixed size of 256x256x3. This means that the resolution of the in-
put image is 256x256 pixels. As a result of this fixed input size, we should see no sig-
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nificant difference in accuracy when using different resolutions. There might be a slight
difference in the accuracy due to the image being resized to fit the input size, but this
difference should be negligible. This hypothesis is tested by comparing the deviation of
the maurice_drum_regular measurement at different resolutions. The resolutions used are
1080p, 720p, and 480p.¹⁶ The deviation values are shown in Table 17. The deviation values

¹⁶The original measurement video was also captured in 1080p but was encoded again with the same
encoding settings used to achieve the smaller resolution videos, except for the resolution, of course. This
was done to make sure that the video quality and encoding are the same. It is also the reason for slightly
different results for the 1080p resolution in previous tables, which the very attentive reader might have
noticed.

are very similar. Thus follows that the resolution of the input image does not significantly
affect the accuracy of the model. This is good news, as it means that the model can be
used on different devices with different resolutions without a significant loss in accuracy.

1080p Deviation (mm) X Y Z
mean 40.076227 10.396079 12.230394
std 49.000929 10.724212 14.250999

720p Deviation (mm) X Y Z
mean 39.937372 10.387030 12.473164
std 48.821626 10.771447 14.450003

480p Deviation (mm) X Y Z
mean 41.670763 11.361194 11.975922
std 48.763101 11.131461 14.568390

Table  17: The accuracy of different resolutions of the maurice_drum_regular measurement.
Model: FULL. Marker type: Landmark.

4.2.7 World Landmarks
All previous results are from measurements with the Landmark as marker type. These are
points that have coordinates in the image frame with an added depth value. MediaPipe
also provides WorldLandmarks as a marker type. These are real-world 3D coordinates. The
values are in meters and are relative to the midpoint between the hips. MediaPipe tries
to predict the size of the person in the frame and uses this to scale the world landmarks.
WorldLandmarks allows to decouple the marker locations from the image frame. With them,
one can track the movements relative to the person instead of the image frame. This can
be useful when the person is moving around in the frame or when the person is moving
towards or away from the camera. As this adds another layer of uncertainty (the scale of
the person in the frame is but a prediction), the accuracy of the WorldLandmarks is expected
to be lower than the Landmarks.
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The deviation values for the WorldLandmarks are shown in Table 18. The deviation values are
indeed higher than the deviation values for the Landmarks by a value of 2 to 5 mm.¹⁷ The

¹⁷Note that the depth values are somewhat improved with the WorldLandmarks marker type. This is at-
tributed to a better scaling factor than the somewhat arbitrary scaling factor of 0.5 that was chosen in the
X axis alignment. The depth values are still as inaccurate as before, but the entire scaling of the depth axis
is just a bit better. The WorldLandmark depth axis scale would still converge to zero if the Golden-section
search method is applied.

same can be observed for the signal stability in Table 19. For the most accuracy, the reg-
ular Landmarks should be used. However, if the application requires tracking movements
that are relative to the person instead of the image frame, then the WorldLandmarks need
to be used. One might also opt for a combination of both, as MediaPipe always outputs
both types of landmarks.

Landmark Deviation (mm) X Y Z
mean 44.054789 5.877316 10.028784
std 52.458578 6.611694 10.963382
min 0.000578 0.000225 0.001258
25% 8.880800 1.829242 2.919620
50% 24.080457 4.135115 6.481524
75% 64.801731 7.475370 13.322674
max 423.136841 68.750352 91.792725

WorldLandmark Deviation (mm) X Y Z
mean 40.064675 10.425273 12.136874
std 49.167113 10.624388 13.952320
min 0.003811 0.000245 0.001166
25% 7.237019 3.242694 2.720210
50% 22.192832 7.156534 7.904396
75% 57.645794 13.916220 16.739466
max 364.849119 81.609742 147.278370

Table 18: The accuracy of WorldLandmarks compared to the accuracy of Landmarks. Model: FULL.
Measurement: maurice_drum_regular.

Landmark Stability (mm) X Y Z
mean 7.579568 1.106332 1.694458
std 10.574589 2.057231 3.608910
min 0.000109 0.000078 0.000012
25% 0.752476 0.165129 0.176408
50% 3.633556 0.468424 0.560157
75% 10.260663 1.137847 1.569148
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Landmark Stability (mm) X Y Z
max 112.231639 46.151331 52.179156

WorldLandmark Stability (mm) X Y Z
mean 3.967809 1.851960 2.493500
std 6.406780 2.779646 4.056749
min 0.000046 0.000069 0.000042
25% 0.377586 0.276647 0.221359
50% 1.447640 0.808166 0.881040
75% 4.694866 2.216550 3.038803
max 87.592255 29.960801 48.716450

Table 19: The stability of WorldLandmarks compared to the stability of Landmarks. Model: FULL.
Measurement: maurice_drum_regular.

Apart from the decrease in accuracy, there is also the scale that needs to be considered.
The scale of the WorldLandmarks is not the same as the scale of the Landmarks. The Landmarks
are in pixels, while the WorldLandmarks are in meters. This means that the scale of the
WorldLandmarks is dependent on the size of the person in the frame. This scale is not always
accurate, as it is a prediction. That the scale is not quite accurate is easily proved by ap-
plying our alignment method. The Golden-section search returns a scale factor for these
WorldLandmarks so they would properly align. Two measurements have been compared,
with the same camera setup but with two people of different size at the same distance
from the camera. The recording of the person with a height of 170cm resulted in the
scaling factor of 0.9. This indicates that the person is smaller than the predicted size by
MediaPipe. The other recording features a person of 184cm, which resulted in a scaling
factor of 1.1. This indicates that the person is larger than the predicted size by MediaPipe.
This is a clear indication that the scale of the WorldLandmarks is not always accurate and
some alignment is needed to get the proper scale. This can also be seen as a advantage,
that different people can be tracked with the same model without the need to adjust the
model to the person’s size.

4.2.8 Depth Issues
In all the measurements it is pretty clear that something is wrong with the depth axis.
It has a way higher deviation than the other axes and is also more unstable. It does of
course make sense that the accuracy and stability differ from the other axes as the depth
is inferred via the seperate GHUM model. But how bad is the depth axis actually?

A trajectory of the depth from one recording is displayed in Figure 24. It is obvious that
the MediaPipe signal (blue) jumps all over the place. However, with some imagination, it
can be seen that when there are actually peaks and valleys in the signal, the MediaPipe
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signal follows the general trend. This is a good sign, as it means that the signal is not
completely random. The scale of them is not quite right and inconsistent though. Unfor-
tunately we see that peaks and valleys are also present in the MediaPipe signal when
none are present in the actual signal with a scale similar of that of the actual peaks and
valleys. This makes it really hard to use the depth signal for any application. If the depth
signal was just a bit inaccurate it could still be used to get a general idea of the depth
and movement in an application, but with the current signal there is just no way to tell if
something is an actual peak or valley or just a random spike in the signal.

Figure  24: A sample of the inferred depth trajectory. Model: LITE, Marker Type: Landmark,
Marker: Left Wrist.
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5 Reducing Jitter and Noise
The measurements show that the pose estimation suffers from jitter and noise. It is, of
course, preferred to have as little of this jitter and noise as possible. This section describes
a post-processing method to reduce the jitter and noise from the pose estimation. While
not entirely eliminating the jitter and noise, the method is shown to reduce it.

5.1 Method
The method presented is based on the prediction of points in the image. The idea is to
predict the position of the points in the image based on the previous positions. This pre-
diction is then used to correct the pose estimation. Every incoming point is compared to
the predicted position, based on distance. The distance is used to determine if the newly
detected point is either caused by jitter or noise, or if it is just caused by the movement
of the object.

The method principle is best explained with a figure, Figure 25. Points 𝐴 to 𝐷 are the
previous positions of the points. Given the previous points, the predicted position 𝐸 is
calculated. The current position 𝐹 , the results returned from the pose estimation, is then
compared to the predicted position 𝐸. If the distance between the predicted position 𝐸
and the current position 𝐹  is smaller than some threshold (e.g. the point 𝐹  would lie in
the striped circle around 𝐸), the current position 𝐹  is considered to be caused by noise.
On the other hand, if the distance is larger than some other threshold (e.g. the point 𝐹
lies outside the blue circle around 𝐸), the current position 𝐹  is considered to be caused
by jitter. Only if the distance is between these two thresholds, the current position F is
considered to be caused by the movement of the object. Based on this information, the
current position 𝐹  is corrected. 𝐹  could be entirely discarded and replaced with the pre-
dicted position. However, this might lead to abrupt changes in positions. A smoother re-
sult is achieved by interposing between the predicted position 𝐸 and the current position
𝐹 .

5.1.1 Prediction
One aspect of the method is the prediction of the position of the points. The prediction
is based on the previous positions of the points. Since we are dealing with points that
are close together in time, a simple linear prediction is sufficient. To further clarify this:
we are tracking the movement of a human, of which the movements are non-cyclic and
non-deterministic. This means that the movement of the person is not predictable in the
long term. However, in the short term (consecutive frames) the movement is somewhat
predictable. We expect the movement to be similar for consecutive frames. The higher
the framerate the more accurate the prediction can be. Advanced prediction methods are
therefore not necessary.
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Figure 25: Noise and Jitter reduction method principle. The horizontal axis is the time axis. The
vertical axis is the value of the dots. Dots 𝐴 to 𝐷 are previous positions, 𝐸 is the predicted

position, 𝐹  is the current position from MediaPipe.

Every point has a timestamp 𝑡 and a value 𝑦. For every pair of consecutive points 𝑃1 (𝑡1, 𝑦1)
and 𝑃2 (𝑡2, 𝑦2) a vector ⃗𝑣 can be computed. The vector ⃗𝑣 is the direction from 𝑃1 to 𝑃2 with
the length of the vector indicating the velocity of the movement: ⃗𝑣 = 𝑃2−𝑃1

𝑡2−𝑡1
. We divide by

the time difference to get the change in value per time unit, which is the velocity. This
is done because in a live stream setting, the time difference between frames can vary
because of dropped frames, for example.

When a new position 𝑃3 (𝑡3, 𝑦3) is returned by MediaPipe, the predicted position 𝑃 ′3  can
be calculated by adding the vector ⃗𝑣 to the last known position 𝑃2, multiplied by the time
difference between 𝑃2 and 𝑃3: 𝑃 ′3 = 𝑃2 + ⃗𝑣.(𝑡3 − 𝑡2) The predicted position 𝑃 ′3  is then com-
pared to the actual position 𝑃3 to determine if the point is caused by noise, jitter, or the
movement of the object.

The prediction requires keeping a memory of a given amount of previous points. The de-
scription above only considers the last 2 points. However, the method can be extended
to consider more points. When considering more points, the vector ⃗𝑣 is calculated by av-
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eraging the 𝑛 vectors of all consecutive points stored in memory. This can be done to
reduce the effect of noise and jitter in the prediction. However, when too many points
are considered, the prediction might not be reactive enough to more sudden changes in
the movement of the object. One might also opt for a weighted average, where the most
recent points have a higher weight in the average, to give more importance to the most
recent points. Using a weighted average has not been tested in this research.

5.1.2 Correction
After the prediction has been made, the correction of the current position is done. The
correction is based on the distance between the predicted position and the actual posi-
tion. The distance is calculated using the Euclidean distance. The principle idea of cor-
rection has already been discussed above. Small differences in distance indicate noise,
large differences indicate jitter. But, instead of discarding these positions, we interpolate
between the predicted position and the actual position.

Consider the interpolation function 𝑓(𝑥), with 𝑥 ≥ 0 the distance between the predicted
position and the actual position to a value between 0 and 1: 𝑓(𝑥) : [0,∞[→ [0, 1]. A value
of 0 means that the predicted position is used, a value of 1 means that the actual position
is used. Take 𝑃  to be the actual position, 𝑃 ′ the predicted position and an interpolation
factor 𝑏. The corrected position is than: 𝑃 = (1 − 𝑏).𝑃 ′ + 𝑏.𝑃  .

The chosen interpolation function is: 𝑓(𝑥) = 𝑒−(log𝑒(𝑥))2 , Figure 26. Firstly, the function is
smooth, to avoid abrupt changes in the corrected position. Secondly, this function is not
picked randomly. It has some nice properties. The function remains close to zero for
small values of 𝑥, meaning that the predicted position is mainly used when the distance is
small. This is important because small distances indicate noise. The predicted values are
assumed to be less noisy than the actual values, as they are based on the previous posi-
tions. This noise reduction is why the interpolation should not reach its maximum value
of 1 for small distances. The long tail of the function ensures that large distances are not
entirely discarded. Because we are not entirely sure if the large distances are caused by
jitter or by the movement of the object, we want to keep some of the actual position. Only
when the frame rate is higher, the average and expected distance between two consecu-
tive points is smaller. In that case. the interpolation function can be more stringent and
more precise at discarding outliers.

It is essential to understand the reasoning behind reaching a maximum value of 1. It is
perfectly reasonable for the user to perform a movement that is not predicted by the
method, without being an outlier. Consider a person who is standing still and suddenly
starts walking. The method will predict the person to be standing still. This action by the
user is not an outlier, but the method cannot predict the movement. The method should
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Figure 26: Interpolation function. The horizontal axis is the distance between the predicted po-
sition and the actual position. The vertical axis is the interpolation factor. The blue line, 𝑔(𝑥) =

𝑥, is purely a visual aid.

not discard the actual position in this case. Setting the maximum value of the interpola-
tion function to 1 ensures that the actual position is not discarded in such cases.

Two parameters are used to tune the parameter function. A first parameter determines
the distance at which the interpolation function reaches its maximum value. Call this pa-
rameter 𝑑, the interpolation function becomes: 𝑓(𝑥) = 𝑒−(log𝑒(𝑥𝑑))

2
. The effect of this para-

meter is shown in Figure 27. Note that it not only changes the distance at which the inter-
polation function reaches its maximum value, but also the steepness of the function. By
setting 𝑑 to a lower value, we lower the acceptable range of movement. This is particularly
useful as we are working in the image frame where the positions are already normalized
to be between 0 and 1.¹⁸

¹⁸Remember the Landmark type of marker. The positions are normalized to be between 0 and 1. This
means that the distance between two points will be, on average, a lot smaller than 1.

A second parameter further controls the “tightness” of the interpolation around the max-
imum value. Call this parameter 𝑠, the interpolation function becomes: 𝑓(𝑥) = 𝑒−𝑠.(log𝑒(𝑥𝑑))

2

and is shown in Figure 28. The parameter 𝑠 controls the falloff of the function. A higher
value of 𝑠 means that the function falls off more quickly on both sides of the maximum
value. This means that the interpolation is stricter.

5.2 Results
The following section compares the results achieved by the method with measurements
without any post-processing. Results of recordings at 30 fps and 60 fps are discussed, as
well as the impact of the memory size of the method.
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Figure 27: Interpolation function with 𝑑 = 0.5. The horizontal axis is the distance between the
predicted position and the actual position. The vertical axis is the interpolation factor. The blue

line, 𝑔(𝑥) = 𝑥, is purely a visual aid.

Figure 28: Interpolation function with 𝑑 = 0.5 and 𝑠 = 4. The horizontal axis is the distance
between the predicted position and the actual position. The vertical axis is the interpolation

factor. The blue line, 𝑔(𝑥) = 𝑥, is purely a visual aid..

5.2.1 30 fps
The maurice_drum_fast recording at 30 fps is used to compare the results. The method is
applied to the recording and the results are compared to the original measurements.

The parameters are set to a memory size of 2 frames, the peak 𝑑 = 0.015, and the tight-
ness 𝑠 = 0.7. Visually, these parameters produce the best results. The noise is reduced,
and the jitter is less pronounced, while still allowing a given range of motion. To confirm
that the method does, in fact, reduce these elements, we should expect to see a better
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signal stability. Table 20 shows the stability of the signal with and without processing.
For the Y and Z axis, the mean is reduced by around 0.5 mm. The impact of the method
on the stability is most noticeable in the percentiles. There we can observe reductions
ranging from 0.5 mm to 1.8 mm. This impact is better displayed in the box plots from
Figure 29. The box plot shows the distribution of the signal stability. The processed signal
has a smaller range and a smaller median. The outliers are also reduced. The method has
a positive impact on the signal stability.

One might argue that the X axis is also improved. However, given the results from the
measurement chapter, we know that the X axis is far from accurate. The increase in sta-
bility for the X axis is purely attributed to the method reducing the noise and jitter. The
method does not improve the actual accuracy of the X axis, even though the results might
suggest otherwise.

Stability unprocessed (mm) X Y Z
mean 9.230469 1.814981 2.656927
std 13.762306 4.700073 8.271183
min 0.000365 0.000031 0.000004
25% 1.143315 0.210036 0.251675
50% 4.848148 0.634218 0.849195
75% 13.118014 1.727039 2.558757
max 676.041508 180.404176 592.605731

Stability processed (mm) X Y Z
mean 5.940251 1.419173 2.109245
std 9.745013 3.663793 8.273394
min 0.000060 0.000002 0.000004
25% 0.870641 0.072621 0.070995
50% 3.905946 0.258439 0.251171
75% 9.016494 0.967466 1.169109
max 674.856917 116.912891 593.312640

Table 20: The signal stability from the maurice_drum_fast measurement without processing
(top) and with processing (bottom). Model: LITE, Marker type: Landmark

Before we conclude that the method achieves its goal, we should also consider the impact
of the method on the accuracy.¹⁹ Table 21 clearly shows that the method has no negative

¹⁹Remember that the accuracy has been defined as the deviation from the Qualisys recordings.

impact on the accuracy. The accuracy is ever so slightly improved, but the improvement
is not significant enough to conclude that the method improves the accuracy.
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Figure 29: The signal stability from the maurice_drum_fast measurement in a boxplot, without
processing (top) and with processing (bottom). Model: LITE, Marker type: Landmark

Deviation unprocessed (mm) X Y Z
mean 64.872857 7.181918 10.046277
std 70.935324 9.058099 14.284985
min 0.006952 0.000276 0.000796
25% 9.690526 2.168622 2.386345
50% 31.462373 4.908393 5.571245
75% 113.099430 8.903545 12.760656
max 680.599720 226.170262 592.765323

Deviation processed (mm) X Y Z
mean 62.469941 7.216940 10.001153
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Deviation processed (mm) X Y Z
std 70.122023 9.067662 14.967685
min 0.000379 0.000839 0.000065
25% 9.050388 2.007845 2.220629
50% 27.936964 4.717725 4.811401
75% 112.598154 8.676960 12.744544
max 679.639393 146.986826 594.480109

Table 21: The deviation from the maurice_drum_fast measurement without processing (top) and
with processing (bottom). Model: LITE, Marker type: Landmark

Lastly, we can see the reduction in jitter clearly in the Y axis, trajectory plots from the
Right Wrist marker in Figure 30. The jitter around the 20-second marker is reduced, and
the trajectory is smoother. The method has a positive impact on the jitter.
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Figure 30: The signal stability from the maurice_drum_fast measurement in a boxplot, without
processing (top) and with processing (bottom). Model: LITE, Marker type: Landmark

A final note on the memory size of the method. The above results are achieved with a
memory size of 2 frames. This is the minimum memory size that can be used, as we need
at least two frames to calculate the direction vector ⃗𝑣. The explanation of the method al-
ready made clear a concern that increasing the memory size might make the method less
responsive. During the experimentation, we found this concern to be true. Setting the
memory size to 4 caused some markers to lag behind the changes in the actual move-
ment. Even higher memory sizes could cause the markers to lag even more. The method
is most effective with a memory size of 2 frames at 30 fps.

5.2.2 60 fps
The maurice_drum_60fps recording at 60 fps is used to compare the results. The following
results are with parameters set to a memory size of 2 frames, the peak 𝑑 = 0.01, and the
tightness 𝑠 = 0.7. The results are displayed in Table 22. Just like with the 30 fps recording,
the method has a positive impact on the signal stability. However, the impact is less pro-
nounced than with the 30 fps recording. This is somewhat surprising, as it was expected
that the method would have a more significant impact on the 60 fps recording. More
frames per second should allow the method to better predict the direction vector ⃗𝑣 and
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a narrower interpolation function. As the frames are closer together, the possible range
of movement should be smaller.

Stability unprocessed (mm) X Y Z
mean 6.084695 1.456349 1.782536
std 7.498098 3.513297 3.320853
min 0.000074 0.000007 0.000027
25% 1.302660 0.168504 0.187517
50% 3.542529 0.510763 0.676077
75% 8.028906 1.362623 1.968414
max 102.800047 122.740564 83.073242

Stability processed (mm) X Y Z
mean 4.251094 1.277513 1.539274
std 4.003413 3.142163 3.161759
min 0.000385 0.000002 0.000005
25% 1.167122 0.082504 0.075393
50% 3.173341 0.344433 0.348346
75% 6.307637 1.050543 1.529996
max 38.699978 63.47007 47.21325

Table 22: The signal stability from the maurice_drum_60fps measurement without processing
(top) and with processing (bottom). Model: LITE, Marker type: Landmark

At 60 fps it is however possible to increase the memory size without causing the markers
to lag behind the actual movement. Using more frames to predict the current position
leads to a more stable prediction. But even at just 4 frames it is shown that the predic-
tion is a bit too stable causing it to lag behind the actual positions. The stability shown in
Table 23 is slightly worse than with a memory size of 2 frames.

Stability processed (mm) X Y Z
mean 4.209328 1.327719 1.634284
std 4.037256 3.022464 3.120164
min 0.000018 0.000010 0.000007
25% 1.179050 0.136544 0.149714
50% 3.084383 0.431487 0.511141
75% 6.089892 1.167036 1.695795
max 40.776414 54.463532 53.594910

Table 23: The signal stability from the maurice_drum_60fps measurement with a memory size
of 4 frames with processing. Model: LITE, Marker type: Landmark
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A possible explanation for the less pronounced impact of the method on the 60 fps
recording could be attributed to the jitter. When closely looking at the jitter, we can see
that the duration (in time) is the same across the 30fps and 60fps recordings. For example
where the jitter would last 2 frames in the 30 fps recording, it would last 4 frames in the
60 fps recording. At 60fps the jitter also has a smoother trajectory, having more frames to
ramp up instead of a spike. This means that the method has less of an impact on the 60
fps recording, as the jitter is already less pronounced. At 60 fps the jitter has a smoother
curve instead of the sharp peaks at 30 fps.

As with the 30 fps recording, the method does not have a negative impact on the accuracy.

5.2.3 Conclusion
At 30 frames per second the method has a positive impact on the signal stability and the
jitter. The same is true for the 60 frames per second recording, but the impact is less pro-
nounced due to the smoother, stretched out, jitter.

The method does not have a negative impact on the accuracy. The method does not im-
prove the accuracy, but it does not worsen it either.
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6 The Air Drumming Application (DrumPy)
The Air Drumming application is a demo application that showcases the use of on-device
body pose estimation.²⁰ The application uses the MediaPipe library to estimate the 3D

²⁰DrumPy is the official application name, referring to the main technology, Python, with which it is
made.

pose of a person in real-time. The estimated pose is then used to detect drumming ges-
tures and generate drum sounds. It is a fun and interactive way to explore the capabilities
of body pose estimation.

The following section describes the key components of the application without going into
too much detail. For a more in-depth explanation, please refer to the source code and
documentation.²¹

²¹The application and source code are publicly available on GitHub: Mouwrice/DrumPy . Note that this
application is as much part of this thesis as the measurements and results presented in the previous
sections, and should be considered as such.

Figure 31: The Air Drumming application in action.

The application is designed to be easy to use and understand, with a simple command-
line interface and graphical user interface (Figure 31). The user can start the application
by simply launching the executable or from the command line to set some options such as
which camera should be used, which model should be used etc. The application captures
video frames from the camera, estimates the body pose of the person in the frame, and
generates drum sounds based on the detected gestures. The user can play the drums by
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moving their hands and arms in the air, as if they were playing a real drum set. The feet
are also tracked to detect the kick drum pedal. The application provides visual feedback
by showing the estimated pose on the screen. One feature of the application is velocity-
based volume control. The volume of the drum sounds is controlled by the velocity of the
drumming gestures. The harder the user hits the drums, the louder the drum sounds will
be. This feature adds a level of realism to the drumming experience and makes it more
engaging for the user.

When launching the application, a calibration phase is initiated. During this phase, the
user is asked to perform a series of drumming gestures to calibrate the position of spe-
cific drum elements such as the snare drum, hi-hat, and cymbals. This calibration step
is necessary to map the detected gestures to the correct drum sounds. These steps are
outputted to the user in a console that is displayed on the screen. For example, the first
element to be calibrated is the Snare Drum, the user should then repeatedly hit the snare
drum at the position where they want the snare drum to be. The application will then use
this information to calibrate the snare drum position. After a minimum of 10 successful
hits and the positions of these hits are consistent, the calibration is considered successful,
and the next element is calibrated. This process is repeated for all drum elements. Every
calibration step along with information about the detected hit is outputted to the user in
the console as shown in the example below, Listing 3.

For more usage information along with an installation guide, please refer to the README
file in the source code repository.²²

²²https://github.com/Mouwrice/DrumPy?tab=readme-ov-file#installation 

1 Snare Drum calibration start console
2
3 Calibrating Snare Drum
4         Hit count: 0
5
6 Volume: 1.000
7 Left Wrist: Snare Drum
8 Distance: 0.000
9 Velocity: -0.867
10 Position: [-0.128, 0.099, -0.827]
11
12
13 Calibrating Snare Drum
14         Hit count: 1
15
16 Volume: 1.000
17 Left Wrist: Snare Drum
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18 Distance: 0.006
19 Velocity: -1.056
20 Position: [-0.148, 0.110, -0.824]
21
22
23 Calibrating Snare Drum
24         Hit count: 2
25
26 Volume: 1.000
27 Left Wrist: Snare Drum
28 Distance: 0.015
29 Velocity: -1.101
30 Position: [-0.188, 0.126, -0.830]

Listing 3: Console output of the calibration process.

6.1 Technologies
The Air Drumming application is entirely written in Python and uses the following li-
braries:
• MediaPipe: For on-device body pose estimation.
• Pygame: For the audio and graphical user interface as well as capturing video frames

from the camera.
• OpenCV: A library used to read video frames from a file.
• Click: For providing a simple and consistent command-line interface.
The application has been tested on both Linux (Arch Linux) and Windows 11. It should
work on other platforms as well, but this has not been tested. Note that unfortunately,
GPU support is not available for the MediaPipe library on Windows, so the application
will run on the CPU only. This may result in lower performance compared to running the
application on a Linux machine with GPU support and a dedicated GPU.

With the help of Nuitka,²³ the application can be compiled into a standalone executable
that can be run on any system without the need to install Python or any of the required

²³Nuitka is a Python compiler that can compile Python code into standalone executables. https://nuitka.
net/ 

libraries. This makes it easy to distribute the application to users who do not have Python
installed on their system. The compiled executable is available in the GitHub repository
for easy download and use. Unfortunately, the compiled executable is only available for
Windows currently, as the binary for Linux did not work as expected.

The code repository has been automated with GitHub Actions to automatically build and
release the compiled executable for Windows whenever a new release is created. This
makes it easy to keep the compiled executable up to date with the latest changes in the
codebase.

56

https://nuitka.net/
https://nuitka.net/
https://nuitka.net/
https://nuitka.net/
https://nuitka.net/
https://nuitka.net/


6.2 Gesture detection
The application uses the estimated 3D pose of the person to detect drumming gestures.
For the demo application, the only drumming gestures detected are downward move-
ments to hit the drums. After the hit detection, the drum element that is hit is determined
by the position of the marker where a hit has been detected. The drum element closest to
the marker is considered to be the drum element that has been hit. The velocity of the hit
is calculated based on the speed of the downward movement. The harder the user hits
the drums, the louder the drum sounds will be. The velocity controls the volume of the
drum sounds, as mentioned earlier.

From the measurement results, we know that the depth values are not reliable and there-
fore are not used in the hit detection and drum positions. This means that the entire air
drumming application works at a 2D level, it does not make use of any depth information.
This is a limitation of the application but has not proved to be a problem in practice as
most drumming gestures are made in the same plane.

From the measurements, we also know that WorldLandmarks are less reliable than the reg-
ular Landmarks. For a more reliable hit detection, the application uses the regular Landmarks
to detect the drumming gestures and to store the positions of the drum elements. Reg-
ular Landmarks have coordinates relative to the image frame, while WorldLandmarks have
coordinates relative to the detected hip midpoint. If the WorldLandmarks are used, the drum
elements would move with the user, which is not desirable. The drum elements should
be fixed in space, so the regular Landmarks are used instead.

6.2.1 Hit detection
The hit detection is based on the observation that a downward movement is made when
hitting a drum, followed by a slight upward movement. A downward movement is defined
as having a consecutive series of positions where the vertical position is decreasing. An
upward movement is defined as having a consecutive series of positions where the ver-
tical position is increasing. At first, this might seem a bit counterintuitive, as one would
expect the hit to be detected when the marker reaches the position of the drum element,
just as in real life. In real life, the drum makes a sound when the drumstick hits the drum.
However, the application is meant for air drumming, where there is no physical drum to
hit. If we were to detect the hit when the marker reaches the position of the drum ele-
ment, a hit might be detected when the user is still moving their hand downwards to hit
the drum. This would reduce the immersion and realism. Instead, our method tries to find
the point where the user expects the drum to be hit, not when the drum would actually
be hit in real life. This is why the hit detection is based on the vertical trend of the marker
and not the actual position of the marker.
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Consider the following example vertical trajectory of a marker, Figure 32. The hit detec-
tion algorithm looks for a downward movement followed by an upward movement. Or
in other words, it looks for a peak or breakpoint in the vertical trajectory. When such a
peak is detected, a hit is registered. It does so by keeping a memory of a certain number
of previous positions and calculating the trend of the vertical position. Given a range of
positions, a downward trend is detected when the average decrease in vertical position is
greater than a certain threshold. An upward trend is detected when the average increase
in vertical position is greater than a certain threshold. This allows to tweak the sensitiv-
ity of the hit detection algorithm. For example, a higher threshold would require a more
pronounced downward movement to be detected as a hit. The threshold can also be low-
ered to allow for more subtle movements to be detected as hits. This is the case for the
hit detection of the feet. The feet are tracked to detect the kick drum pedal. When using
a pedal, the user might not immediately lift their foot after hitting the pedal. Setting the
upward threshold to a lower value allows detecting the hit even when there is no real
upward movement. The upward threshold is even set to a negative value, but not as low
as the downward threshold. Now a foot induced hit can even be detected when the foot
is still slightly moving downwards after the hit.

Figure 32: Example vertical trajectory of a marker. Every dot represents a given position at a
given time. The horizontal axis is time, the vertical axis is position.
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Another important aspect that affects the hit detection is the notion of the current posi-
tion. When the algorithm receives the position of marker 𝐹  from the example (Figure 32),
it has no way of knowing that this point 𝐹  is the “hit point”. It would need to be able to
look ahead. Of course, this is not possible, this is why the current position is defined as
being some time in the past. For example, if we take the current position to be the posi-
tion of the marker 2 frames ago, we have the artificial ability of looking ahead 2 frames
to detect if an upward trend follows the current position. Note that there is a tradeoff
between the current position and the number of frames used to detect the upward trend.
The more frames are used to detect the trend, the more accurate the hit detection will be,
but the less responsive it will be. This is because the hit detection will be delayed by the
number of frames used to detect the upward trend. The current position is a compromise
between accuracy and responsiveness.

6.2.2 Finding the nearest drum element
Every element of the drum set has a position which is set during the calibration fase. Dur-
ing the calibration any detected hit will result in the position of the element to be updated
and the calibrated drum element to play its sound.

After a hit is registered, a corresponding drum element needs to be found. The applica-
tion calculates the distance between the hit position and the position of each drum ele-
ment. The drum element closest to the hit position is considered to be the drum element
that has been hit. This is a simple way to determine which drum element has been hit and
works well in practice. The distance is calculated using the Euclidean distance formula,
which calculates the distance between two points in 2D space (the location of the hit and
the location of the drum element). There is also a threshold distance that is used to de-
termine if a hit is close enough to a drum element to be considered a hit on that drum
element. If the distance between the hit position and the drum element is less than the
threshold distance, the hit is considered to be on that drum element. This threshold dis-
tance can be adjusted to make the hit detection more or less sensitive. A lower threshold
distance will require the hit to be closer to the drum element to be considered a hit, while
a higher threshold distance allows hits that are further away to be considered hits on the
drum element. This can be useful to fine-tune the hit detection to the user’s preferences
and playing style. It would be unrealistic if the user would trigger a drum sound when
hitting the air far away from the drum element. Setting the threshold too low, however,
might result in missed hits. Especially when the threshold gets close to the noise level of
the measurements, the hit detection might become unreliable.

6.2.3 Latency
In this section, we will discuss the latency of the application. Latency is the time it takes
for a user to perform an action and see the result of that action. In the context of the Air
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Drumming application, latency is the time it takes for the user to hit a drum and hear the
drum sound. Latency is an important factor in interactive applications, as high latency
can reduce the responsiveness of the application and make it less engaging for the user.

The latency of the Air Drumming application is affected by several factors:

• The frame rate of the camera: The frame rate of the camera determines how often the
application receives new video frames. A higher frame rate allows the application to
process new frames more frequently, reducing the latency of the application. The frame
rate of the camera is set to 30 frames per second in the application, which is a common
frame rate for video capture. Especially, most webcams support this frame rate.

• The processing time of the body pose estimation model: The body pose estimation
model processes each video frame to estimate the 3D pose of the person. The process-
ing time of the model depends on the complexity of the model and the hardware it is
running on. A more complex model or slower hardware will increase the processing
time of the model, increasing the latency of the application. The MediaPipe Pose model
used in the application is optimized for real-time performance on mobile devices and
runs efficiently on most modern hardware.

• The hit detection algorithm: The hit detection algorithm processes the estimated 2D
pose of the person to detect drumming gestures. The algorithm analyses the trajectory
of the marker to detect downward and upward movements, which indicate a hit on a
drum element. The hit detection algorithm is designed to be fast and efficient, yet it
requires some frame buffer to detect the upward trend. This buffer introduces a delay
in the hit detection, which affects the latency of the application. The size of the frame
buffer can be adjusted to balance accuracy and responsiveness.

So the first limitation is the frame rate of the camera. The application has the frame rate
set at 30 fps. This translates to a video frame every 33,33… ms. The application processes
the video frame and estimates the pose of the person in the frame. This processing time
is the second limitation. However, during the measurements, it was found that the pro-
cessing time of the pose estimation model is very low. The pose estimation model runs
at around 30 fps on a CPU. This means that the pose estimation model processes a frame
in less than 33,33… ms. The hit detection algorithm is the third limitation. The hit detec-
tion algorithm requires a frame buffer to detect the upward trend. This buffer introduces
a delay in the hit detection, which affects the latency of the application. The size of the
frame buffer can be adjusted to balance accuracy and responsiveness. The buffer is set
to 2 frames, which means that the hit detection is delayed by 2 frames. This results in a
latency of 66,66… ms. Now we can calculate the maximum latency of the application.

Now we can calculate the maximum latency. For the pose estimation model to process the
frame, suppose the worst-case scenario, but still achieving 30 fps. The processing time
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of the model is then 33,33… ms. Finally, the hit detection algorithm introduces a delay
of 2 frames, resulting in a delay of 66,66… ms. This results in a maximum latency of 100
ms. This maximum latency is a tenth of a second and might be noticeable by the user.
However, if the inference time of the model is lower, the latency will be lower as well. The
latency can be further reduced by increasing the frame rate of the camera or optimizing
the hit detection algorithm. The latency of the application is acceptable for most users
and does not significantly affect the user experience.

6.3 Notion of Origin and Coordinate System
This section briefly discusses the differences in the notion of origin and coordinate sys-
tem between the MediaPipe library and typical motion capture systems. With the Qual-
isys motion capture system, the origin is calibrated at one specific point in the room. The
origin is fixed and does not move during the capture session. The origin is used as a
reference point to calculate the position of the markers in 3D space. The position of the
markers is calculated relative to the origin, which is why the origin is an essential part of
the motion capture system. The origin and coordinate system are a bit different requiring
a different approach in the application.

In the MediaPipe library, the origin depends on the marker type used. With the Landmark
marker type, the entire coordinate system is in the image frame. The origin point is one of
the corners of the frame, and every other point is relative to this origin in the frame. This
has major implications on the perceived size of motion due to perspective. The actual real-
world distance between markers is inversely proportional to the distance of the markers
to the camera. A small movement close to the camera that covers the entire image frame
will be interpreted as much larger than performing a large movement far away from the
camera. When the size of motion is used in the application, this should be considered. In
that case, it is best to use a fixed distance from the camera to the user. This way, the size
of the motion is constant, and the application can be used in a more predictable way.

The WorldLandmark marker type has the origin at the detected hip midpoint. This means
that the position of the markers is calculated relative to the hip midpoint. This is very
different to the fixed origins from the Qualisys motion capture system and the Landmark
markers. The position of the markers is not fixed in space, but moves with the user. In
that case, all positions are relative to the user, regardless of the position of the user in the
room. This is not desirable for the application, as the drum elements should be fixed in
space. This is why the Landmark marker type is used in the application, as the positions of
the drum elements are fixed in space and do not move with the user.
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6.4 Limitations
There are two limitations to the application. A first one is due to the jitter caused by the
pose estimation model. When crossing arms, a common thing to do when drumming, the
pose estimation model produces jitter in the estimated pose. For example, when one arm
is hitting the drums and occluding the other arm, the pose estimation model can get con-
fused and think the other arm is also moving. This produces jitter in the estimated pose,
which can affect the hit detection. The hit detection algorithm relies on the trajectory of
the marker to detect drumming gestures. If the estimated pose is jittery, the trajectory of
the marker will be noisy, which can lead to false positives or missed hits. This is a limita-
tion of the pose estimation model and cannot be easily solved. The jitter can be reduced
by using a more robust pose estimation model or filtering the estimated pose, but this
comes at the cost of increased latency and reduced responsiveness.

A second limitation is in the hit detection itself. When performing a hit, this is detected
by the hit detection algorithm. However, it is possible that in the next frame, that same
hit is detected again due to the trajectory still having the downward and upward trend
in the next frame. This can result in multiple hits being detected for a single hit. This is
a limitation of the hit detection algorithm and can be solved by introducing a cooldown
period after a hit has been detected. During this cooldown period, no hits are registered,
preventing multiple hits from being detected for a single hit. This cooldown period can be
adjusted to balance accuracy and responsiveness. A longer cooldown period will prevent
multiple hits from being detected, but will also introduce more latency in the hit detec-
tion. A shorter cooldown period will reduce the latency, but might result in multiple hits
being detected for a single hit. This is a tradeoff that needs to be considered when fine-
tuning the hit detection algorithm. Currently, the cooldown period is set to 5 frames at
30 fps, which results in a cooldown period of 166,66… ms. This unfortunately limits the
number of hits that can be detected in a short amount of time. Rapid drumming might
result in missed hits due to the cooldown period. This is a limitation of the hit detection
algorithm and can be improved by adjusting the cooldown period or introducing a more
sophisticated hit detection algorithm.

62



7 Future work
In this section, some ideas are listed that could be interesting to explore in the future.

7.1 Increasing signal stability
The signal stability has been increased by the method introduced previously, reducing the
jitter and noise. However, the signal is still not perfect. It would be interesting to explore
other methods to increase the signal stability even further.

As it stands, the method is based on a simple prediction model combined with an inter-
polation method between the predicted and the measured value. This can be generalized
to a statistical problem where the goal is to predict a state given a previous state, together
with the uncertainty of the prediction. One could use a Kalman filter to estimate the next
state and its uncertainty. The Kalman filter can work as a two-phase process where the
first phase is the prediction given the previous state and the second phase is the update
phase given the measured value [31]. This would allow making a more informed decision
on how to interpolate between the predicted and the measured value.

The prediction of every marker is currently independent of the other markers. However,
the markers are not independent of each other. It would be interesting to explore meth-
ods that consider the dependencies between the markers. Constructing a skeleton model
of the human body that takes into account the dependencies and constraint between
the markers could be a way to increase the signal stability. For example, the distance be-
tween connected markers (by a bone) should be constant. This could be used to correct
the predicted value of a marker if the distance between the connected markers is not
constant. Another example is that the angle between connected markers is limited to a
certain range of values.

7.2 Depth estimation
From the measurements, it was clear that the depth estimation has a low accuracy and
suffers from major instability. Future work could focus on improving the depth estima-
tion. This could be achieved in two ways. The first is by simply using a different model or
training the computer vision model to more accurately predict the depth. The second way
is to use additional sensors to estimate the depth. For example, a depth sensor could be
used to measure the depth of the markers. This could be combined with the computer
vision model to increase the accuracy of the depth estimation. Or by using a multi-camera
setup, the depth could be estimated by triangulating the position of the markers in the
different camera views.
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7.3 Real-time application
There are various ways to build upon the application. One simple way to improve the ap-
plication is by simply replacing the currently used MediaPipe model with a better model
if one is found. An increase in depth is certainly welcome, but also an increase in perfor-
mance would be beneficial. Currently, the application runs at around 30 frames per sec-
ond, which limits the ability to track fast and complex movements. A faster model would
allow for a higher frame rate and thus a more responsive application.

Another way to improve the application is by integrating a better prediction model such
as the ones mentioned in the previous section.

An entirely different application can be built by using the same principles. Not only is body
pose estimation improving, but also hand pose estimation is becoming more accurate.
Similar research can be done to discover the feasibility of an application that requires
accurate hand and finger tracking. For example, a virtual piano application.

Other future research can focus on the usage of body pose estimation in a different con-
text, such as in a medical rehabilitation setting. Such a system could help medical profes-
sionals to analyse the movements of patients. Or it could be used as a tool for patients
that need to do exercises at home. The system could provide feedback on the correctness
of the exercises and give tips on how to improve the exercises.
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8 Conclusion
In this thesis, we have presented a method to compare body tracking data from a com-
puter vision model with a motion capture system. Using the method, we have shown that
an average accuracy of 5-10 mm can be achieved with MediaPipe Pose for the movements
relative to the camera. We have shown that the accuracy of the depth estimation is a
low lower and suffers from major instability. MediaPipe Pose can track the movements
of the body in real-time with a frame rate of around 30 frames per second on consumer
hardware. And reaching up to 45 fps on a powerful GPU. During the measurements, a
jitter phenomenon was observed in the signal which appears to be caused by overlapping
body parts such as crossed arms.

We have also shown that the signal stability can be increased by using a simple prediction
model combined with an interpolation method between the predicted and the measured
value. This method reduces the jitter and noise in the signal. However, the signal is still
not perfect. Future work could focus on increasing the signal stability even further.

A drum application was built to demonstrate the capabilities of the system. The applica-
tion uses the body pose estimation to track the movements of the user and translate
these movements to drum sounds. The application was able to track the movements of
the user in real-time and play the drum sounds accordingly. The simple yet very effective
procedure for detecting drum hits has been described as well. The application technology
stack consists of MediaPipe Pose for the body pose estimation, PyGame for the visualisa-
tion and sound, and Python for the application logic. The application and its source code
have been made publicly available for download and can be found on GitHub.

The future of body pose estimation is promising. The accuracy and performance are
shown to already be sufficient to construct a simple real-time air drumming application.
The application of body pose estimation is not limited to drumming. It can be used in
various applications, such as in medical rehabilitation, virtual reality, and human-com-
puter interaction. Future work could focus on increasing the signal stability, improving
the depth estimation, and finding new applications for body pose estimation. We have
seen that body pose estimation can bring the expensive and complex technology of mo-
tion capture to consumer hardware. This opens up a whole new world of possibilities for
applications that require body tracking.
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